Featured Research

from universities, journals, and other organizations

Exploring the possibilities for zeolites: Team creates database of 2.6 million varieties of molecular sieves

Date:
August 23, 2011
Source:
Rice University
Summary:
A new paper hints at the untapped possibilities for making synthetic zeolites -- microporous materials that are used as molecular sieves and catalysts for everything from petroleum processing to nuclear waste disposal. Using computer models, researchers compiled a list of 2.6 million potential zeolite structures that are searchable by geometric arrangement, crystallographic structure and other criteria.

Some people collect stamps and coins, but when it comes to sheer utility, few collections rival the usefulness of Rice University researcher Michael Deem's collection of 2.6 million zeolite structures.

Related Articles


Zeolites are materials -- including some natural minerals -- that act as molecular sieves, thanks to a Swiss-cheese-like arrangement of pores that can sort, filter, trap and chemically process everything from drugs and petroleum to nuclear waste. Zeolites are particularly useful as catalysts -- materials that spur chemical reactions. There are about 50 naturally occurring zeolites and almost three times as many human-made varieties.

Deem's database, which is described in a new paper that will be featured on the cover of an upcoming issue of the Royal Society of Chemistry's journal Physical Chemistry Chemical Physics, hints at the untapped possibilities for making even more synthetic zeolites.

"For many catalytic applications only a single material has been found," said Deem, the John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy. "Expanding the diversity of the zeolite structures would be helpful to improve performance in existing applications, to explore novel functions and to answer basic scientific questions."

Zeolites are useful because of the particular way atoms are mixed and arranged in their porous interiors. Based on these arrangements, zeolites can cause chemicals to react in particular ways, and even subtle changes in the arrangements can alter the reactions that are spurred. Deem's database was created to explore the many zeolite structures that are physically possible, and he said several researchers are already using the information to identify zeolites that could be used for carbon sequestration and other applications.

"Computational methods can play a stimulatory role in the synthesis of new zeolite materials," Deem said. "That is the motivation; that is the challenge that brings us back to zeolites time and again."

In 2007, Deem and his students used both supercomputers and unused computing cycles from more than 4,300 idling desktop PCs to painstakingly calculate every conceivable atomic formulation for zeolites. They created a database of more than 3.4 million atomic formulations of the porous silicate minerals.

In the current study, Deem, Rice graduate student Ramdas Pophale and Purdue University computational analyst Phillip Cheeseman designed tools to examine and compare the physical properties of each entry. Using these tools, they pared down the larger set by removing potential redundancies as well as "low-energy" structures that would either be unstable or impossible to synthesize.

For each of the 2.6 million remaining structures in the database, the team carried out calculations to find specific physical and chemical properties -- including X-ray diffraction patterns, ring-size distributions and dielectric constants -- that could help guide researchers interested in synthesizing them or in finding a new type of zeolite for a specific application.

Deem said the new database has been deposited in the publicly available Predicted Crystallography Open Database.

The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ramdas Pophale, Phillip A. Cheeseman, Michael W. Deem. A database of new zeolite-like materials. Physical Chemistry Chemical Physics, 2011; DOI: 10.1039/C0CP02255A

Cite This Page:

Rice University. "Exploring the possibilities for zeolites: Team creates database of 2.6 million varieties of molecular sieves." ScienceDaily. ScienceDaily, 23 August 2011. <www.sciencedaily.com/releases/2011/04/110405113020.htm>.
Rice University. (2011, August 23). Exploring the possibilities for zeolites: Team creates database of 2.6 million varieties of molecular sieves. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2011/04/110405113020.htm
Rice University. "Exploring the possibilities for zeolites: Team creates database of 2.6 million varieties of molecular sieves." ScienceDaily. www.sciencedaily.com/releases/2011/04/110405113020.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins