Featured Research

from universities, journals, and other organizations

Link between brain molecule and obesity and diabetes discovered

Date:
April 25, 2011
Source:
Albert Einstein College of Medicine
Summary:
The brain's hypothalamus plays a key role in obesity and one of its major complications -- Type 2 diabetes. Nerve cells in the hypothalamus detect nutrients and hormones circulating in the blood and then coordinate a complex series of behavioral and physiological responses to maintain a balance between calories eaten and calories burned. Obesity and diabetes can result when this regulatory mechanism goes awry. Now, research has revealed a molecule in the brain that may contribute to those health problems, both of which are reaching epidemic proportions.

The brain's hypothalamus plays a key role in obesity and one of its major complications -- type 2 diabetes. Nerve cells in the hypothalamus detect nutrients and hormones circulating in the blood and then coordinate a complex series of behavioral and physiological responses to maintain a balance between calories eaten and calories burned. Obesity and diabetes can result when this regulatory mechanism goes awry.

Now, research by postdoctoral fellow Clιmence Blouet, Ph.D., and Gary Schwartz, Ph.D., professor in the Dominick P. Purpura Department of Neuroscience and of medicine at Albert Einstein College of Medicine of Yeshiva University, has revealed a molecule in the brain that may contribute to those health problems, both of which are reaching epidemic proportions. A 2008 study in the journal Obesity predicted that 86 percent of U.S. adults will be overweight or obese by 2030 if current trends continue. And last October the U.S. Centers for Disease Control and Prevention estimated that the prevalence of diabetes among American adults could rise from the current 1 in 10 to as many as 1 in 3 by 2050.

In work involving mouse models of obesity and diabetes, Drs. Blouet and Schwartz have shown that excess nutrient availability leads to an overabundance of a protein found in nutrient-sensing nerve cells of the hypothalamus. They concluded that increased levels of this protein, known as thioredoxin-interacting protein, or TXNIP, contribute to the onset of obesity and the impaired control of blood sugar levels that characterizes type 2 diabetes. Their findings were published in the April 20 online edition of the Journal of Neuroscience.

"Our study indicates that TXNIP in hypothalamic nerve cells provides a crucial link between brain nutrient sensing and the increases in body weight and fat mass that lead to obesity and diabetes," said Dr. Schwartz. "Hyperglycemia -- pathologically elevated glucose levels -- causes an excess of TXNIP in hypothalamic neurons, which in turn may contribute in several ways to a breakdown in energy homeostasis -- the balance between calories taken in and calories burned. For example, we've found that elevated TXNIP in nerve cells contributes to obesity by decreasing energy expenditure, as evidenced by decreased physical activity, and by reducing the rate at which fat is burned to produce energy. In addition to increasing fat mass, hypothalamic TXNIP overabundance also impairs glucose tolerance and insulin sensitivity -- two of the hallmarks of diabetes."

Dr. Schwartz notes that these findings regarding TXNIP could eventually lead to therapies. "Interventions that can suppress TXNIP production or selectively inactivate this protein might help in preventing weight gain and the obesity and diabetes that result from it," he said.

The title of the paper is "Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice." The research was funded by the Skirball Institute for Nutrient Sensing and the National Institutes of Health through the Albert Einstein Diabetes Research and Training Center and the New York Obesity Research Center. Albert Einstein College of Medicine is actively seeking licensing partners interested in pursuing clinical application of this patent-pending technology.

 

 


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Blouet, G. J. Schwartz. Nutrient-Sensing Hypothalamic TXNIP Links Nutrient Excess to Energy Imbalance in Mice. Journal of Neuroscience, 2011; 31 (16): 6019 DOI: 10.1523/JNEUROSCI.6498-10.2011

Cite This Page:

Albert Einstein College of Medicine. "Link between brain molecule and obesity and diabetes discovered." ScienceDaily. ScienceDaily, 25 April 2011. <www.sciencedaily.com/releases/2011/04/110419205718.htm>.
Albert Einstein College of Medicine. (2011, April 25). Link between brain molecule and obesity and diabetes discovered. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/04/110419205718.htm
Albert Einstein College of Medicine. "Link between brain molecule and obesity and diabetes discovered." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419205718.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) — Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins