Featured Research

from universities, journals, and other organizations

A tool to predict crowd turbulence

Date:
April 24, 2011
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Recent crowd disasters, such as those seen in 2006 during the annual pilgrimage to Mecca and in 2010 at the Love Parade in Duisburg, have underlined the need to better understand what determines the collective behavior of crowds. A new model suggests that a pedestrian seeks simply to minimize congestion in his visual field by walking towards the empty spaces he can see, while at the same time adjusting his speed in order to maintain a safe distance from the nearest obstacle.

Examples of model simulations when a large crowd moves along a path that narrows (left) or changes direction by 90° (right). The color indicates the intensity of physical pressure experienced by individuals. Red areas indicate a high risk of crushing.
Credit: © CRCA – CNRS / Université Toulouse 3 – Paul Sabatier

Recent crowd disasters, such as those seen in 2006 during the annual pilgrimage to Mecca and in 2010 at the Love Parade in Duisburg, have underlined the need to better understand what determines the collective behavior of crowds. In a study published in PNAS on 18 April, scientists from CNRS and the Ecole Polytechnique Fédérale in Zurich managed to simulate collective movements resulting from interactions between pedestrians within a crowd. Their work enables them to predict potentially dangerous situations and to propose a regulation of movements in the event of a proven risk.

Until now, models for crowd dynamics were mainly constructed based on analogies with physicochemical systems. The behavior of a pedestrian was formalized using a combination of the forces attracting him to his destination and the forces repelling him from other individuals and obstacles. However, these models are difficult to calibrate and only imperfectly reflect reality. To overcome these problems, Mehdi Moussaďd and Guy Theraulaz from the Centre de Recherche sur la Cognition Animale (CNRS / Université Toulouse 3-Paul Sabatier), working in collaboration with Dirk Helbing at the Ecole Polytechnique Fédérale in Zurich, have proposed a novel approach based both on cognitive sciences and the physics of complex systems that closely combines experimentation and modeling.

Their model suggests that a pedestrian seeks simply to minimize congestion in his visual field by walking towards the empty spaces he can see, while at the same time adjusting his speed in order to maintain a safe distance from the nearest obstacle. Digital simulations using this model have demonstrated that these two simple rules are sufficient to reproduce a broad range of the collective behaviors observed in crowds, such as the spontaneous formation of unidirectional lanes in opposite directions. Furthermore, as the density of pedestrians increases, the model can predict the emergence of new phenomena, such as the accordion effect characterized by successive forward waves of movement, interspersed with periods during which the pedestrians stand still (stop-and-go). Above a critical density threshold, a combination of these rules with the effect of physical contacts between pedestrians can spontaneously provoke gigantic, collective crushes. This phenomenon, referred to as turbulence, was observed during the accidents that occurred in Mecca in 2006 and characterizes the dynamics of a crowd in a dangerous situation, where pedestrians are overwhelmed by chaotic movement.

This recent work enables a clearer understanding of the dynamics of a moving crowd and opens the way to the development of new risk planning tools. For example, the model designed by these scientists can identify potentially dangerous areas in an environment where are large number of people may gather. It may therefore help urban planners in developing pedestrian precincts in town centers, or engineers to design public buildings (stadiums, concert halls, stations, etc.), or even assist security experts during the organization of major events.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Moussaid, D. Helbing, G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1016507108

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "A tool to predict crowd turbulence." ScienceDaily. ScienceDaily, 24 April 2011. <www.sciencedaily.com/releases/2011/04/110422115449.htm>.
CNRS (Délégation Paris Michel-Ange). (2011, April 24). A tool to predict crowd turbulence. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2011/04/110422115449.htm
CNRS (Délégation Paris Michel-Ange). "A tool to predict crowd turbulence." ScienceDaily. www.sciencedaily.com/releases/2011/04/110422115449.htm (accessed August 22, 2014).

Share This




More Mind & Brain News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins