Featured Research

from universities, journals, and other organizations

New drug target discovered for kidney disease

Date:
April 26, 2011
Source:
University of California - Santa Barbara
Summary:
Two discoveries point to potential new drug therapies for patients with kidney disease.

Mouse polycystic kidney
Credit: Weimbs Lab, UCSB

Two discoveries at UC Santa Barbara point to potential new drug therapies for patients with kidney disease. The findings are published in this week's issue of the Proceedings of the National Academy of Sciences.

Over 600,000 people in the U.S., and 12 million worldwide, are affected by the inherited kidney disease known as autosomal-dominant polycystic kidney disease, or ADPKD. The disease is characterized by the proliferation of cysts that eventually debilitate the kidneys, causing kidney failure in half of all patients by the time they reach age 50.

Currently, no treatment exists to prevent or slow cyst formation, and most ADPKD patients require kidney transplants or lifelong dialysis for survival, explained Thomas Weimbs, director of the laboratory where the discoveries were made. Weimbs is an associate professor in the Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute at UCSB.

First, Weimbs and his research team discovered a molecular mechanism that sheds light on the disease. The mechanism concerns polycystin-1, a protein that is mutated in ADPKD patients. The team discovered how this protein regulates a well-known transcription factor called STAT3. Transcription factors transcribe information from DNA to RNA, from specific genes. Second, the team discovered that STAT3 is strongly, and aberrantly, activated in polycystic kidneys.

"The clinical significance of these discoveries lies in the fact that STAT3 is also known to be aberrantly activated in many forms of cancer and is considered an important drug target for cancer therapy," said Weimbs. "Numerous STAT3 inhibitors are currently being developed and tested, and several experimental drugs are already available. Our results suggest that STAT3 activation is a driving force for the cyst growth that leads to polycystic kidneys in ADPKD. Therefore, STAT3 may be a highly promising drug target for the treatment of ADPKD."

Weimbs explained further that STAT3 is a signaling molecule that is activated in response to many different growth factors binding to specific receptors on the surface of kidney cells. In response to these growth factors hitting the cell, STAT3 is activated. That causes STAT3 to turn on the expression of certain genes. This activity causes the cells to proliferate, as they do in cancer.

"In polycystic kidney disease, we have strong proliferation, but it is similar to having benign tumors -- where the tumor stays in place," said Weimbs. "The cysts keep growing, but they do not metastasize or invade other tissues as do cancerous tumors. Polycystic kidneys are full of small, benign tumors or cysts. This is still very destructive, because eventually the disease will destroy the kidney."

The research team is currently testing STAT3 as a drug target in mice with ADPKD.

The National Institutes of Health funded the research.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. J. Talbot, J. M. Shillingford, S. Vasanth, N. Doerr, S. Mukherjee, M. T. Kinter, T. Watnick, T. Weimbs. Polycystin-1 regulates STAT activity by a dual mechanism. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1103816108

Cite This Page:

University of California - Santa Barbara. "New drug target discovered for kidney disease." ScienceDaily. ScienceDaily, 26 April 2011. <www.sciencedaily.com/releases/2011/04/110426131817.htm>.
University of California - Santa Barbara. (2011, April 26). New drug target discovered for kidney disease. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/04/110426131817.htm
University of California - Santa Barbara. "New drug target discovered for kidney disease." ScienceDaily. www.sciencedaily.com/releases/2011/04/110426131817.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins