Featured Research

from universities, journals, and other organizations

Understanding how glasses 'relax' provides some relief for manufacturers

Date:
April 30, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have used computer simulations to gain basic insights into a fundamental problem in material science related to glass-forming materials, offering a precise mathematical and physical description of the way temperature affects the rate of flow in this broad class of materials -- a long-standing goal.

Researchers at the National Institute of Standards and Technology and Wesleyan University have used computer simulations to gain basic insights into a fundamental problem in material science related to glass-forming materials, offering a precise mathematical and physical description of the way temperature affects the rate of flow in this broad class of materials -- a long-standing goal.

Manufacturers who design new materials often struggle to understand viscous liquids at a molecular scale. Many substances including polymers and biological materials change upon cooling from a watery state at elevated temperatures to a tar-like consistency at intermediate temperatures, then become a solid "glass" similar to hard candy at lower temperatures. Scientists have long sought a molecular-level description of this theoretically mysterious, yet common, "glass transition" process as an alternative to expensive and time-consuming trial-and-error material discovery methods. Such a description might permit the better design of plastics and containers that could lengthen the shelf life of food and drugs.

A fundamental question is why many materials behave differently when temperature changes. In some "fragile" glass-forming materials, a modest variation in temperature can make the material change from highly fluid to extremely viscous, while in "strong" fluids this change in viscosity is much more gradual. This effect influences how long a manufacturer has to work with a material as it cools. "For decades, material scientists have heavily relied on empirical rules of thumb to characterize these materials," says NIST theoretician Jack Douglas. "But if you want to design a material that does precisely what you want, you need a molecular understanding of the underlying physical processes involved."

According to Douglas, the increasingly viscous nature of glass-forming liquids is related to molecules that move together in long strings around other atoms that are almost frozen in their motion. The growth of these snake-like structures leads to an increase in the viscosity of the liquid: the lower the temperature, the longer the chains, and the more viscous the fluid. The team found that the rate at which these spontaneously organizing snake-like strings grow in size as the material cools is quantitatively related mathematically to the fluid fragility -- confirming intuitive arguments made nearly half a century ago by physicists G. Adams and J.H. Gibbs, but now bolstering them with a firm computational underpinning.

Douglas and his collaborator Francis Starr of Wesleyan University achieved a large variation of fluid fragility through use of a computer model, which mimics a polymer fluid that includes tiny nanometer-sized particles. Portraying the addition of various amounts of nanoparticles and varying their interaction with the polymers, Starr says, gave the team a sort of "knob to tweak" to reveal how the fluidity changed with temperature and how the motion of the clusters was quantitatively related to changes in the fluid's properties. This tuning of cooperative motion in glass-forming liquids and fragility should be crucial in material design. Douglas says.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Francis Starr, Jack Douglas. Modifying Fragility and Collective Motion in Polymer Melts with Nanoparticles. Physical Review Letters, 2011; 106 (11) DOI: 10.1103/PhysRevLett.106.115702

Cite This Page:

National Institute of Standards and Technology (NIST). "Understanding how glasses 'relax' provides some relief for manufacturers." ScienceDaily. ScienceDaily, 30 April 2011. <www.sciencedaily.com/releases/2011/04/110427091955.htm>.
National Institute of Standards and Technology (NIST). (2011, April 30). Understanding how glasses 'relax' provides some relief for manufacturers. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/04/110427091955.htm
National Institute of Standards and Technology (NIST). "Understanding how glasses 'relax' provides some relief for manufacturers." ScienceDaily. www.sciencedaily.com/releases/2011/04/110427091955.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins