Featured Research

from universities, journals, and other organizations

Electronics: A step toward valleytronics

Date:
April 28, 2011
Source:
Naval Research Laboratory
Summary:
Valley-based electronics, also known as valleytronics, is one step closer to reality. Researchers have now shown that the valley degree of freedom in graphene can be polarized through scattering off a line defect. Unlike previously proposed valley filters in graphene, which rely on confined structures that have proven hard to achieve experimentally, the present work is based on a naturally occurring line defect that has already been observed.

The band structure of graphene with its two valleys is shown in blue and red.
Credit: Naval Research Laboratory

Valley-based electronics, also known as valleytronics, is one step closer to reality. Two researchers at the Naval Research Laboratory (NRL) have shown that the valley degree of freedom in graphene can be polarized through scattering off a line defect. Unlike previously proposed valley filters in graphene, which rely on confined structures that have proven hard to achieve experimentally, the present work is based on a naturally occurring line defect that has already been observed.

The discovery was published in Physical Review Letters on March 28, 2011 and was also the subject of a separate Viewpoint article in Physics.

Information in solid-state, either classical or quantum, is generally carried by electrons and holes. The information can be encoded in various degrees of freedom such as charge or spin. Charge representations, for example the absence or presence of an electron in a quantum dot, are attractive as they are easily manipulated and interrogated through electric fields. The advantage of spin representations, used in the field of spintronics, is their superior shielding from undesired electric fluctuations in the environment, making the information in these latter representations more robust. In the future, there might be a third middle-ground alternative in the valley degree of freedom that exists in certain crystals, including graphene.

The valley degree of freedom in graphene gained attention in 2007 when it was proposed that electrons and holes could be filtered according to which valley they occupy. Unfortunately, the structures required for this and subsequent valley filters are difficult to fabricate, and as a result a valley filter has yet to be demonstrated experimentally. The present study from NRL shows that an extended line defect in graphene acts as a natural valley filter. "As the structure is already available, we are hopeful that valley-polarized currents could be generated in the near future" said Dr. Daniel Gunlycke who made the discovery together with Dr. Carter White. Both work in NRL's Chemistry Division.

Valley refers to energy depressions in the band structure, which describes the energies of electron waves allowed by the symmetry of the crystal. For graphene, these regions form two pairs of cones that determine its low-bias response. As a large crystal momentum separates the two valleys, the valley degree of freedom is robust against slowly varying potentials, including scattering caused by low-energy acoustic phonons that often require low-bias electronic devices to operate at low temperatures typically only accessible in laboratories.

Valley polarization is achieved when electrons and holes in one valley are separated spatially from those in the other valley, but this is difficult to do as the two valleys have the same energies. It was found, however, that this spatial separation can be obtained in connected graphene structures that possess reflection symmetry along a particular crystallographic direction with no bonds crossing the reflection plane. This property turns out to be present in a recently observed line defect in graphene. The reflection symmetry only permits electron waves that are symmetric to pass through the line defect. Anti-symmetric waves are reflected. By projecting an arbitrary low-energy wave in graphene onto its symmetric component, one gets the transmission amplitude through this defect, which is strongly dependent on the valley. Electron and hole waves approaching the line defect at a high angle of incidence results in a polarization near 100%.

There is a long way to go before valleytronics can become a viable technology, explains Gunlycke. The recent advance, however, provides a realistic way to reach a crucial milestone in its development. This research was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Gunlycke, C. White. Graphene Valley Filter Using a Line Defect. Physical Review Letters, 2011; 106 (13) DOI: 10.1103/PhysRevLett.106.136806

Cite This Page:

Naval Research Laboratory. "Electronics: A step toward valleytronics." ScienceDaily. ScienceDaily, 28 April 2011. <www.sciencedaily.com/releases/2011/04/110427171628.htm>.
Naval Research Laboratory. (2011, April 28). Electronics: A step toward valleytronics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/04/110427171628.htm
Naval Research Laboratory. "Electronics: A step toward valleytronics." ScienceDaily. www.sciencedaily.com/releases/2011/04/110427171628.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins