Featured Research

from universities, journals, and other organizations

New material could improve safety for first responders to chemical hazards

Date:
May 2, 2011
Source:
University of California - San Diego
Summary:
Carbon nanofibers with the same chemical properties as the activated charcoal used in respirators have a similar ability to absorb chemical pollutants. Their photonic structure means that they will change color as pollutants accumulate, a warning that the filter canister has lost effectiveness. Researchers describe how they made the microsensors and demonstrate their ability to detect volatile organic compounds.

Porous photonic crystal microsensor particles on the ends of optical fibers can detect organic pollutants.
Credit: Brian King, UCSD Chemistry and Biochemistry

A new kind of sensor could warn emergency workers when carbon filters in the respirators they wear to avoid inhaling toxic fumes have become dangerously saturated.

In a recent issue of the journal Advanced Materials, a team of researchers from the University of California, San Diego and Tyco Electronics describe how they made the carbon nanostructures and demonstrate their potential use as microsensors for volatile organic compounds.

First responders protect themselves from such vapors, whose composition is often unknown, by breathing through a canister filled with activated charcoal -- a gas mask. Airborne toxins stick to the carbon in the filter, trapping the dangerous materials.

As the filters become saturated, chemicals will begin to pass through. The respirator can then do more harm than good by providing an illusion of safety. But there is no easy way to determine when the filter is spent. Current safety protocols base the timing of filter changes on how long the user has worn the mask.

"The new sensors would provide a more accurate reading of how much material the carbon in the filters has actually absorbed," said team leader Michael Sailor, professor of chemistry and biochemistry and bioengineering at UC San Diego. "Because these carbon nanofibers have the same chemical properties as the activated charcoal used in respirators, they have a similar ability to absorb organic pollutants."

Sailor's team assembled the nanofibers into repeating structures called photonic crystals that reflect specific wavelengths, or colors, of light. The wing scales of the Morpho butterfly, which give the insect its brilliant iridescent coloration, are natural examples of this kind of structure.

The sensors are an iridescent color too, rather than black like ordinary carbon. That color changes when the fibers absorb toxins -- a visible indication of their capacity for absorbing additional chemicals.

The agency that certifies respirators in the U.S., the National Institute of Occupational Safety and Health, has long sought such a sensor but the design requirements for a tiny, sensitive, inexpensive device that requires little power, have proved difficult to meet.

The materials that the team fabricated are very thin -- less than half the width of a human hair. Sailor's group has previously placed similar photonic sensors on the tips of optical fibers less than a millimeter across and shown that they can be inserted into respirator cartridges. And the crystals are sensitive enough to detect chemicals such as toluene at concentrations as low as one part per million.

Ting Gao, a senior researcher at the Polymers, Ceramics, and Technical Services Laboratories of Tyco Electronics in Menlo Park, California and Timothy L. Kelly, a NSERC post-doctoral fellow at UC San Diego co-authored the paper. The National Science Foundation, the Department of Homeland Security, the Natural Sciences and Engineering Research Council of Canada, and TYCO Electronics provided funding for the work.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Susan Brown. Note: Materials may be edited for content and length.


Journal Reference:

  1. Timothy L. Kelly, Ting Gao, Michael J. Sailor. Carbon Nanofiber Photonic Crystals: Carbon and Carbon/Silicon Composites Templated in Rugate Filters for the Adsorption and Detection of Organic Vapors (Adv. Mater. 15/2011). Advanced Materials, 2011; 23 (15): 1688 DOI: 10.1002/adma.201190052

Cite This Page:

University of California - San Diego. "New material could improve safety for first responders to chemical hazards." ScienceDaily. ScienceDaily, 2 May 2011. <www.sciencedaily.com/releases/2011/05/110501183923.htm>.
University of California - San Diego. (2011, May 2). New material could improve safety for first responders to chemical hazards. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/05/110501183923.htm
University of California - San Diego. "New material could improve safety for first responders to chemical hazards." ScienceDaily. www.sciencedaily.com/releases/2011/05/110501183923.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins