Featured Research

from universities, journals, and other organizations

Normal stem cells made to look and act like cancer stem cells

Date:
May 5, 2011
Source:
University of North Carolina School of Medicine
Summary:
Researchers, after isolating normal stem cells that form the developing placenta, have given them the same properties of stem cells associated with an aggressive type of breast cancer.

Researchers at the University of North Carolina at Chapel Hill School of Medicine, after isolating normal stem cells that form the developing placenta, have given them the same properties of stem cells associated with an aggressive type of breast cancer.

The scientific first opens the door for developing novel targeted therapies aimed at triple negative breast cancer. Known also as TNBC, this is a highly recurrent tumor that spreads aggressively beyond its original site in the breast and carries a poor prognosis for patients who have it.

The study will be published online on May 6 by the journal Cell Stem Cell.

"We changed only one amino acid in normal tissue stem cells, trophoblast stem cells. While they maintained their self-renewal, these mutant stem cells had properties very similar to what people predict in cancer stem cells: they were highly mobile and highly invasive," said Gary Johnson, PhD, professor and chair of pharmacology at UNC and senior study author. "No one has ever isolated a stem cell like that." Johnson is also a member of the UNC Lineberger Comprehensive Cancer Center.

In normal development, epithelial stem cells called trophoblasts are involved in the formation of placental tissue. To do so, they must undergo a conversion to tissue-like cells. These then travel to the site in the uterus where they revert to a noninvasive tissue cell. "But the mutant trophoblast stem cells made in our lab, which would normally invade the uterus and then stop, just keep going," Johnson said.

The study led by the first authors, research assistant professor Amy N. Abell, PhD and graduate student Nicole Vincent Jordan, both working in Johnson's lab, showed that similar to triple-negative breast cancer stem cells, normal tissue stem cells also go through the same program of molecular changes during organ development called epithelial mesenchymal transition, or EMT. This suggests that breast cancer cells utilize this tissue stem cell molecular program for tumor metastasis, or cancer spread.

The discovery was made using a unique mouse model of tissue stem cell EMT developed in the Johnson laboratory. The study identified two proteins that regulate the expression of specific genes in tissue stem cells during organ development that control normal EMT. Inactivation of the proteins MAP3K4 and CBP in trophoblast stem cells causes them to become hyperinvasive.

In collaboration with Aleix Prat, PhD and Charles Perou, PhD in the UNC Lineberger Comprehensive Cancer Center, the research team made another discovery: an overlap between the gene expression signature of the mutant tissue stem cells properties during EMT and the triple-negative human breast cancer gene signature that's predictive of invasiveness. The same genes were downregulated.

"This significant genetic intersection between tissue stem cells and TNBC has identified previously unrecognized genes that likely contribute to breast cancer metastasis," said Johnson. "This newly identified gene signature is currently being investigated in different models of breast cancer with the goal of developing new therapeutic interventions for the treatment of TNBC."

Other UNC coauthors are Alicia A. Midland, Nancy L. Johnson, Deborah A. Granger, Piotr A. Mieczkowski, and Shawn M. Gomez. Coauthors at the National Institute of Environmental Health Sciences are Weichung Huang and Leiping Li.

The research was supported in part by the National Institute of General Medical Sciences, a component of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amy N. Abell, Nicole Vincent Jordan, Weichun Huang, Aleix Prat, Alicia A. Midland, Nancy L. Johnson, Deborah A. Granger, Piotr A. Mieczkowski, Charles M. Perou, Shawn M. Gomez et al. MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells. Cell Stem Cell, Volume 8, Issue 5, 525-537, 6 May 2011 DOI: 10.1016/j.stem.2011.03.008

Cite This Page:

University of North Carolina School of Medicine. "Normal stem cells made to look and act like cancer stem cells." ScienceDaily. ScienceDaily, 5 May 2011. <www.sciencedaily.com/releases/2011/05/110505123957.htm>.
University of North Carolina School of Medicine. (2011, May 5). Normal stem cells made to look and act like cancer stem cells. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/05/110505123957.htm
University of North Carolina School of Medicine. "Normal stem cells made to look and act like cancer stem cells." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505123957.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins