Featured Research

from universities, journals, and other organizations

Forecast calls for nanoflowers to help return eyesight: Physicist leads effort to design fractal devices to put in eyes

Date:
May 6, 2011
Source:
University of Oregon
Summary:
A researcher is on a quest to grow flowers that will help people who've lost their sight by designing nano-sized flowers whose fractal shapes on implants will engage with neurons to carry light to the optic nerve.

Richard Taylor, physics professor and director of the University of Oregon Material Science Institute, is on a quest to grow flowers that will help people who've lost their sight by designing nano-sized flowers whose fractal shapes on implants will engage with neurons to carry light to the optic nerve.
Credit: Photo by Jim Barlow

University of Oregon researcher Richard Taylor is on a quest to grow flowers that will help people who've lost their sight, such as those suffering from macular degeneration, to see again.

These flowers are not roses, tulips or columbines. They will be nanoflowers seeded from nano-sized particles of metals that grow, or self assemble, in a natural process -- diffusion limited aggregation. They will be fractals that mimic and communicate efficiently with neurons.

Fractals are "a trademark building block of nature," Taylor says. Fractals are objects with irregular curves or shapes, of which any one component seen under magnification is also the same shape. In math, that property is self-similarity. Trees, clouds, rivers, galaxies, lungs and neurons are fractals, Taylor says. Today's commercial electronic chips are not fractals, he adds.

Eye surgeons would implant these fractal devices within the eyes of blind patients, providing interface circuitry that would collect light captured by the retina and guide it with almost 100 percent efficiency to neurons for relay to the optic nerve to process vision.

In an article titled "Vision of beauty" for Physics World, Taylor, a physicist and director of the UO Materials Science Institute, describes his envisioned approach and how it might overcome the problems occurring with current efforts to insert photodiodes behind the eyes. Current chip technology is limited, because it doesn't allow sufficient connections with neurons.

"The wiring -- the neurons -- in the retina is fractal, but the chips are not fractal," Taylor says. "They are just little squares of electrodes that provide too little overlap with the neurons."

Beginning this summer, Taylor's doctoral student Rick Montgomery will begin a yearlong collaboration with Simon Brown at the University of Canterbury in New Zealand to experiment with various metals to grow the fractal flowers on implantable chips.

The idea for the project emerged as Taylor was working under a Cottrell Scholar Award he received in 2003 from the Research Corporation for Science Advancement. His vision is now beginning to blossom under grants from the Office of Naval Research (ONR), the U.S. Air Force and the National Science Foundation.

Taylor's theoretical concept for fractal-based photodiodes also is the focus of a U.S. patent application filed by the UO's Office of Technology Transfer under Taylor's and Brown's names, the UO and University of Canterbury.

The project, he writes in the Physics World article, is based on "the striking similarities between the eye and the digital camera." (Physics World article is available at: http://physicsworld.com/cws/article/indepth/45840)

"The front end of both systems," he writes, "consists of an adjustable aperture within a compound lens, and advances bring these similarities closer each year." Digital cameras, he adds, are approaching the capacity to capture the 127 megapixels of the human eye, but current chip-based implants, because of their interface, are only providing about 50 pixels of resolution.

Among the challenges, Taylor says, is determining which metals can best go into body without toxicity problems. "We're right at the start of this amazing voyage," Taylor says. "The ultimate thrill for me will be to go to a blind person and say, we're developing a chip that one day will help you see again. For me, that is very different from my previous research, where I've been looking at electronics to go into computers, to actually help somebody … if I can pull that off that will be a tremendous thrill for me."

Taylor also is working under a Research Corp. grant to pursue fractal-based solar cells.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Forecast calls for nanoflowers to help return eyesight: Physicist leads effort to design fractal devices to put in eyes." ScienceDaily. ScienceDaily, 6 May 2011. <www.sciencedaily.com/releases/2011/05/110505181537.htm>.
University of Oregon. (2011, May 6). Forecast calls for nanoflowers to help return eyesight: Physicist leads effort to design fractal devices to put in eyes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/05/110505181537.htm
University of Oregon. "Forecast calls for nanoflowers to help return eyesight: Physicist leads effort to design fractal devices to put in eyes." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505181537.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins