Featured Research

from universities, journals, and other organizations

Study reveals origins of a cancer affecting the blood and bone marrow

Date:
May 16, 2011
Source:
NYU Langone Medical Center / New York University School of Medicine
Summary:
A new study sheds light on the origins of myeloid leukemia, a type of blood cancer that affects children and adults. The researchers discovered that novel mutations in an intracellular communication pathway called Notch led to the cancer, pointing to a potential new target for treating this disease.

A new study by the NYU Cancer Institute, an NCI-designated cancer center, sheds light on the origins of myeloid leukemia, a type of blood cancer that affects children and adults. The researchers discovered that novel mutations in an intracellular communication pathway called Notch led to the cancer, pointing to a potential new target for treating this disease. Notch has already been implicated in another type of blood cancer called T-cell acute lymphoblastic leukemia, but the new research found an unexpected role for it in myeloid leukemia.

The study is published in the May 12, 2011 issue of the journal Nature.

"This study shows the power of the Notch signaling pathway in myeloid leukemias," says Iannis Aifantis, PhD, associate professor in the Department of Pathology at NYU Langone Medical Center and a member of the NYU Cancer Institute, who led the new study. "This discovery," he says, "suggests a potential for future targeted therapies." Dr. Aifantis is also a Howard Hughes Medical Institute Early Career Scientist.

Last year, acute myeloid leukemia was diagnosed in more than 12,000 adults and the disease claimed nearly 9,000 lives in the United States, according to the National Cancer Institute. The blood cancer is the most common type of acute leukemia in adults. Normally, the bone marrow makes blood stem cells (immature) that mature over time. Some of these are a form called myeloid and others are lymphoid. The lymphoid stem cell develops into a white blood cell, while the more-versatile myeloid stem cell develops into red blood cells, white blood cells, and platelets, which prevent clotting. Cancer occurs when too many immature myeloid stem cells are produced in the blood and bone marrow.

The Notch signaling pathway, the complex web of intracellular interactions that occurs after a protein called Notch is activated on the cell's surface, is a well known actor in cancer, but the new study reveals that the varied members of this pathway function in unexpected ways to produce disease. Notch is named for a particular kind of mutation, first identified almost 100 years ago, that gives fruit flies notched wings.

The study evaluated mutations in the Notch pathway in mice models of the disease, and also in blood samples from patients with chronic myeloid leukemia. Researchers identified several mutations that inactivated or silenced the pathway, leading to the accelerated accumulation of abnormal blood cells. Most importantly, the study also revealed that the reactivation of the silenced genes in the pathway blocked the disease, providing additional support for the potentially crucial role that Notch might play in the development of cancer.

In a commentary accompanying the study in Nature, Demetrios Kalaitzidis and Scott A. Armstrong of Dana Farber Cancer Institute and Children's Hospital Boston, note that the study defines a new role for Notch signaling as a suppressor of leukemia development. They note that further research is needed to understand the intricacies of Notch signaling in normal and cancerous tissue, which will help determine "the best approaches to manipulating this pathway for optimal therapauetic response."

This research study was funded by the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by NYU Langone Medical Center / New York University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Apostolos Klinakis, Camille Lobry, Omar Abdel-Wahab, Philmo Oh, Hiroshi Haeno, Silvia Buonamici, Inge van De Walle, Severine Cathelin, Thomas Trimarchi, Elisa Araldi, Cynthia Liu, Sherif Ibrahim, Miroslav Beran, Jiri Zavadil, Argiris Efstratiadis, Tom Taghon, Franziska Michor, Ross L. Levine, Iannis Aifantis. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011; 473 (7346): 230 DOI: 10.1038/nature09999

Cite This Page:

NYU Langone Medical Center / New York University School of Medicine. "Study reveals origins of a cancer affecting the blood and bone marrow." ScienceDaily. ScienceDaily, 16 May 2011. <www.sciencedaily.com/releases/2011/05/110512092716.htm>.
NYU Langone Medical Center / New York University School of Medicine. (2011, May 16). Study reveals origins of a cancer affecting the blood and bone marrow. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/05/110512092716.htm
NYU Langone Medical Center / New York University School of Medicine. "Study reveals origins of a cancer affecting the blood and bone marrow." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512092716.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins