Featured Research

from universities, journals, and other organizations

Immune system release valve: Scientists reveal a new mechanism for keeping inflammation in check

Date:
May 26, 2011
Source:
Weizmann Institute of Science
Summary:
Scientists have discovered a mechanism that controls inflammation similarly to a steam-engine valve: just when the inflammatory mechanism that protects cells against viruses reaches its peak of activity, the molecular "steam-release valve" interferes, restoring this mechanism to its resting state, ready for re-activation.

The molecular machines that defend our body against infection don't huff and puff, but some of them apparently operate on the same principle as a steam engine. Weizmann Institute scientists have discovered a mechanism that controls inflammation similarly to a steam-engine valve: Just when the inflammatory mechanism that protects cells against viruses reaches its peak of activity, the molecular "steam-release valve" interferes, restoring this mechanism to its resting state, ready for re-activation. This finding might shed new light on such inflammatory disorders as rheumatoid arthritis or inflammatory bowel disease, and point the way to developing effective therapies.

How does the cellular "steam-release valve" work? The scientists have discovered that its crucial component is the enzyme called caspase-8. When the cell is invaded by a virus, caspase-8 joins a large molecular complex that forms in order to send out an inflammatory signal. However, this same signal, once triggered, makes sure that the inflammatory response will eventually be shut down. The mechanism can be likened to the peak of the steam cycle when the valve opens, releasing steam and restoring the engine to its initial position. In the case of the cell, the inflammatory signal prompts caspase-8 to destroy a protein called RIP1 -- a crucial signal amplifier -- after RIP1 has reached a state in which it can produce maximal amplification. The inflammatory cycle is thus completed: The signaling mechanism, precisely after reaching its peak activity level, returns to its neutral state, ready to enter yet another inflammatory cycle in case the cell is still under viral attack.

Until recently, caspase-8, discovered by study leader Prof. David Wallach of Weizmann's Biological Chemistry Department some 15 years ago, was known to prevent inflammation in only one way -- by causing damaged cells to self-destruct in a process called apoptosis. In the course of this process, the contents of the dying cells are prevented from spreading around and triggering inflammation. The present study, reported recently in Immunity, reveals an entirely new mechanism by which caspase-8 can control inflammation more directly. The research was performed in Wallach's lab by Dr. Akhil Rajput, Dr. Andrew Kovalenko, Dr. Konstantin Bogdanov, Seung-Hoon Yang, Dr. Tae-Bong Kang, Dr. Jin-Chul Kim and Dr. Jianfang Du.

The study results might be relevant for various types of inflammation -- not only that caused by viruses -- and can thus provide important insights into inflammatory disorders. Since such disorders may occur when the inflammatory response fails to be shut down properly, it's possible that caspase-8 malfunction and the resulting excessive activity of the RIP1 "signal amplifier" might be involved. And if this is indeed the case, a new treatment approach could aim at blocking RIP1, thereby fighting inflammation in a precise and selective manner.

Prof. David Wallach's research is supported by the M.D. Moross Institute for Cancer Research; and the Leona M. and Harry B. Helmsley Charitable Trust. Prof. Wallach is the incumbent of the Joseph and Bessie Feinberg Professorial Chair.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Akhil Rajput, Andrew Kovalenko, Konstantin Bogdanov, Seung-Hoon Yang, Tae-Bong Kang, Jin-Chul Kim, Jianfang Du, David Wallach. RIG-I RNA Helicase Activation of IRF3 Transcription Factor Is Negatively Regulated by Caspase-8-Mediated Cleavage of the RIP1 Protein. Immunity, 2011; 34 (3): 340 DOI: 10.1016/j.immuni.2010.12.018

Cite This Page:

Weizmann Institute of Science. "Immune system release valve: Scientists reveal a new mechanism for keeping inflammation in check." ScienceDaily. ScienceDaily, 26 May 2011. <www.sciencedaily.com/releases/2011/05/110525110153.htm>.
Weizmann Institute of Science. (2011, May 26). Immune system release valve: Scientists reveal a new mechanism for keeping inflammation in check. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/05/110525110153.htm
Weizmann Institute of Science. "Immune system release valve: Scientists reveal a new mechanism for keeping inflammation in check." ScienceDaily. www.sciencedaily.com/releases/2011/05/110525110153.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins