Featured Research

from universities, journals, and other organizations

Two gene classes linked to new prion formation

Date:
May 26, 2011
Source:
University of Illinois at Chicago
Summary:
Researchers have discovered two classes of yeast genes that may hold clues as to why proteins take on the misfolded prion form, a condition associated with several neurodegenerative diseases, such as "mad cow."

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Related Articles


Prions can turn a normal protein into a misfolded form. One prion in mammals promotes progressive neurodegenerative disorders like "mad cow" disease that often prove fatal. But how this process happens remains an open question for scientists.

Prions have been found to exist in a wide range of organisms. Those in brewer's yeast, which researchers like Liebman study, provide critical insight into how prions work.

Prion proteins in yeast aggregate, while non-prion proteins do not. Aggregation of new prions happens spontaneously -- but, in the natural world, very slowly.

Anita Manogaran, a former UIC research assistant professor in biological sciences, working with Liebman, sped-up prion formation to identify genes important in the process. The researchers were also able to monitor different stages of prion appearance by tagging prion proteins with another protein that fluoresces green. Cells in the process of forming prions had fluorescent rings, which could give rise to cells with prions.

"We learned there are some genes important for the generation of prions," Liebman said.

Some 400 yeast genes were screened for the ability to prevent the new appearance of yeast prion proteins.

"Through a number of screens, we came down to a much smaller number (of genes) that inhibited prion appearance," Liebman said. These genes fell into two classes -- one that could still make the rings, which is the hallmark of the beginning of prion aggregation. But the other class of genes had trouble forming rings, Liebman said.

Liebman and Manogaran also looked beyond new prion formation to see if these same genes had an effect on toxicity associated with a protein that causes Huntington's disease -- a fatal human neurodegenerative disorder.

"We found that genes that could make rings also were more toxic in the presence of the Huntington's disease protein," Liebman said. "If no rings were made, they were less toxic."

The full implications of the findings are not yet understood, Liebman cautioned.

"The more we understand about these mechanisms and the genes that are involved, the more we'll be able to understand the new appearance of prion disease -- like Creutzfeldt-Jakob and 'mad cow' -- and Huntington's disease. The more we understand what affects toxicity, the more we'll understand why these are toxic."

The findings were reported in the May 19 issue of PLoS Genetics.

Manogaran, now at the University of Wisconsin-Milwaukee, UIC research assistant Joo Hong and former UIC undergraduate student Joan Hufana worked with Liebman on the project. Other co-authors of the paper include Jens Tyedmers of the University of Heidelberg and Susan Lindquist of the Massachusetts Institute of Technology.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anita L. Manogaran, Joo Y. Hong, Joan Hufana, Jens Tyedmers, Susan Lindquist, Susan W. Liebman. Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes. PLoS Genetics, 2011; 7 (5): e1001386 DOI: 10.1371/journal.pgen.1001386

Cite This Page:

University of Illinois at Chicago. "Two gene classes linked to new prion formation." ScienceDaily. ScienceDaily, 26 May 2011. <www.sciencedaily.com/releases/2011/05/110526122911.htm>.
University of Illinois at Chicago. (2011, May 26). Two gene classes linked to new prion formation. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2011/05/110526122911.htm
University of Illinois at Chicago. "Two gene classes linked to new prion formation." ScienceDaily. www.sciencedaily.com/releases/2011/05/110526122911.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins