Featured Research

from universities, journals, and other organizations

'Hot body' could help ships reduce drag

Date:
June 2, 2011
Source:
University of Melbourne
Summary:
New research into drag reduction has the potential to help industries such shipping to reduce energy use and carbon emissions.

New research into drag reduction has the potential to help industries such shipping to reduce energy use and carbon emissions.

Related Articles


Professor Derek Chan from the University of Melbourne's Department of Mathematics and Statistics said the research demonstrates a new way to minimise drag of fast moving projectiles in water.

A collaboration between the University of Melbourne and the King Abdulla University of Science and Technology in Saudi Arabia, the research was based on the 255 year-old Leidenfrost effect.

The Leidenfrost effect describes the phenomenon where a liquid produces an insulating vapour layer when it comes in contact with a solid surface that is hotter than its boiling point.

The new research used high-speed video footage to assess the drag produced from polished balls dropped into liquid. The results found that the drag on the ball is reduced to almost the minimum possible through the creating of an insulating vapour as it falls through the liquid.

Professor Chan said that the new drag reduction method has the potential to reduce energy costs for a broad range of applications, such as ocean transport and high-pressure pumping of liquid through pipelines.

"An obvious area of application is shipping," he said.

"Australia transports a large amount of products such as iron ore and grain around the world. The ship's hot body could substantially minimise the amount of drag as it passes through water, therefore potentially reducing transportation costs and greenhouse gas emissions."

"There are still a number of issues that need to be addressed before this drag reduction method can be applied commercially, such as the effect of increased heat on issues such as corrosion," he said.

The paper was published as a research highlight in Nature Physics, and in full by the Physical Review Letters, a peer-reviewed scientific journal published by the American Physical Society.

The University of Melbourne and the King Abdulla University are now writing a follow-up theory paper. While the first paper demonstrated that the drag reduction method is real and achievable, the follow-up paper will provide detailed theoretical analysis of the research.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ivan Vakarelski, Jeremy Marston, Derek Chan, Sigurdur Thoroddsen. Drag Reduction by Leidenfrost Vapor Layers. Physical Review Letters, 2011; 106 (21) DOI: 10.1103/PhysRevLett.106.214501

Cite This Page:

University of Melbourne. "'Hot body' could help ships reduce drag." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110602091832.htm>.
University of Melbourne. (2011, June 2). 'Hot body' could help ships reduce drag. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/06/110602091832.htm
University of Melbourne. "'Hot body' could help ships reduce drag." ScienceDaily. www.sciencedaily.com/releases/2011/06/110602091832.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins