Featured Research

from universities, journals, and other organizations

Fetal programming of disease risk to next generation depends on parental gender

Date:
June 5, 2011
Source:
The Endocrine Society
Summary:
Overexposure to stress hormones in the womb can program the potential for adverse health effects in those children and the next generation, but effects vary depending on whether the mother or father transmits them, a new animal study suggests.

Overexposure to stress hormones in the womb can program the potential for adverse health effects in those children and the next generation, but effects vary depending on whether the mother or father transmits them, a new animal study suggests.

The results were presented at The Endocrine Society's 93rd Annual Meeting in Boston.

"This research sheds light on how babies who are exposed in the womb to excessive levels of stress hormones, known as glucocorticoids, can pass on the health effects to their own children, and how the effects vary between mothers and fathers," said the study's principal investigator, Amanda Drake, MD, PhD, a senior clinical fellow at the University of Edinburgh in Scotland.

Glucocorticoid levels may become raised during pregnancy if, for example, the mother experiences stress or illness or receives glucocorticoid drugs for treatment of illness or premature labor. Excess glucocorticoid exposure of the fetus can reduce birth weight and raise blood pressure later in life in animals and humans, and babies born with low birth weight are at increased risk of diabetes and heart disease in adulthood, Drake said.

"This has led to the concept of fetal programming, suggesting that the environment experienced in the womb can affect development, resulting in an increased risk of later disease. This increased disease risk can be passed to the next generation," Drake said.

Using a rodent model of early life programming, Drake and colleagues studied the effects of glucocorticoid overexposure, with the drug dexamethasone, during the last week of gestation. They studied the effects on the directly exposed offspring and on their offspring. Their prior research showed that the low birth weight induced by prenatal exposure to dexamethasone transmits to a second generation through both male and female rats, according to Drake.

This new research showed that although birth weight is reduced in the offspring of male or female rats that were exposed to dexamethasone during fetal development, this effect was more pronounced in the offspring of male rats exposed to excess glucocorticoids during development in the womb.

Additionally, although birth weight was reduced in the second generation of rats, the genes that were affected differed from those seen in their parents, Drake said. In the first generation, glucocorticoid overexposure in the womb affected genes in the liver of the fetus and in the placenta. This increased the likelihood of the baby rats having a low birth weight and increased their risk of developing diabetes and heart disease in later life, she said.

However, the genes affected in the second generation depended on whether the mother or the father had been exposed to glucocorticoids while developing in the womb, the authors reported. These affected genes that could produce adverse health effects included genes important in growth and the transport of nutrients across the placenta.

Regarding the study, which was funded by the U.K. Medical Research Council, Drake said, "It could help inform future research to find interventions that could prevent diseases such as diabetes and high blood pressure," Drake said.


Story Source:

The above story is based on materials provided by The Endocrine Society. Note: Materials may be edited for content and length.


Cite This Page:

The Endocrine Society. "Fetal programming of disease risk to next generation depends on parental gender." ScienceDaily. ScienceDaily, 5 June 2011. <www.sciencedaily.com/releases/2011/06/110604182016.htm>.
The Endocrine Society. (2011, June 5). Fetal programming of disease risk to next generation depends on parental gender. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/06/110604182016.htm
The Endocrine Society. "Fetal programming of disease risk to next generation depends on parental gender." ScienceDaily. www.sciencedaily.com/releases/2011/06/110604182016.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins