Featured Research

from universities, journals, and other organizations

New strategy to attack tumor-feeding blood vessels

Date:
June 15, 2011
Source:
Walter and Eliza Hall Institute
Summary:
Scientists in Australia have discovered a key molecule needed to kill the blood vessels that supply tumors. The research team found that for anti-cancer therapies that target tumor blood vessels to work the death-inducing molecule Bim is required. The finding could lead to improved anti-cancer treatments that are based on a two- or three-pronged attack on both the tumor and its blood supply.

Cancers such as breast cancer, lung cancer and melanoma release the blood vessel growth factor, VEGF, to encourage blood vessels to grow within the tumor, supplying it with nutrients. Tumors can be treated with anti-cancer medications that kill the cancer cells, and anti-angiogenic medications that starve the tumour by attacking its blood supply. The study suggests that a third type of medication, BH3-mimetics, may enhance the tumor-killing effect of anti-cancer and anti-angiogenic medications.
Credit: Walter and Eliza Hall Institute

Scientists at the Walter and Eliza Hall Institute have discovered a key molecule needed to kill the blood vessels that supply tumours.

The research team from the institute's Molecular Genetics of Cancer and Cancer and Haematology divisions found that for anti-cancer therapies that target tumour blood vessels to work the death- inducing molecule Bim is required. The finding could lead to improved anti-cancer treatments that are based on a two- or three-pronged attack on both the tumour and its blood supply. The research will be published online in the Journal of Experimental Medicine.

The growth of solid tumours, such as lung cancer, breast cancer and melanoma, depends on nutrients and oxygen being provided by the tumour blood supply. Cancer cells encourage the growth of blood vessels to feed a tumour by producing the hormone-like protein, vascular endothelial growth factor (VEGF). The research by Drs Edwina Naik, Leigh Coultas and Lorraine O'Reilly, and Professors Jerry Adams and Andreas Strasser showed that VEGF produced by tumours blocks production of Bim in the cells that line the tumour blood vessels.

New 'anti-angiogenic' medications that attack the blood vessels within tumours are showing promise in starving many types of cancers by reducing their blood supply.

In this study, in experimental melanoma, lung cancer and breast cancer models, Bim levels increased in the cells lining the blood vessels when VEGF was depleted by anti-angiogenic drugs, ultimately killing the blood vessel cells. VEGF depletion reduced the number of blood vessels in tumours, making the tumours shrink. However, in mice in which the blood vessels do not express Bim, VEGF depletion did not affect the number of tumour-associated blood vessels, and tumours grown in Bim-deficient mice did not respond to anti-angiogenic treatments.

Dr Strasser said this finding suggests that strategies for treating tumours by attacking the tumour blood supply could be optimised by incorporating drugs called BH3-mimetics that cause cell death by acting like Bim at a molecular level. "Similarly, therapies that increase the amount of Bim in tumour blood vessels could enhance the effects of anti-angiogenic agents," Dr Strasser said.

"BH3 mimetics may have two beneficial effects in cancer therapy. Our previous research had showed they can directly trigger death in tumour cells, particularly when the tumour is also attacked by chemotherapeutic drugs. We now think BH3-mimetics could also impact tumour cells indirectly by killing endothelial cells within tumours.

"This suggests that a promising new approach to the therapy of solid tumours may be to use a three-medication combination of a drug that specifically targets the tumour cell, an anti- angiogenic agent to impair the tumour blood vessels, plus a BH3 mimetic that will help the anti- tumour drug to directly kill the tumour cells and also will help the anti-angiogenic agent to kill the intra-tumoral endothelial cells, which in turn will starve the tumour, causing even more tumour cell death."

The research was supported by the Cancer Council Victoria, the National Health and Medical Research Council, the Australian Research Council, the US National Institutes of Health, the Leukemia and Lymphoma Society and Genentech.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Edwina Naik, Lorraine A. O'Reilly, Marie-Liesse Asselin-Labat, Delphine Merino, Ann Lin, Michele Cook, Leigh Coultas, Philippe Bouillet, Jerry M. Adams, Andreas Strasser. Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Experimental Medicine, 2011; DOI: 10.1084/jem.20100951

Cite This Page:

Walter and Eliza Hall Institute. "New strategy to attack tumor-feeding blood vessels." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110606112814.htm>.
Walter and Eliza Hall Institute. (2011, June 15). New strategy to attack tumor-feeding blood vessels. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/06/110606112814.htm
Walter and Eliza Hall Institute. "New strategy to attack tumor-feeding blood vessels." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606112814.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins