Featured Research

from universities, journals, and other organizations

New strategy to attack tumor-feeding blood vessels

Date:
June 15, 2011
Source:
Walter and Eliza Hall Institute
Summary:
Scientists in Australia have discovered a key molecule needed to kill the blood vessels that supply tumors. The research team found that for anti-cancer therapies that target tumor blood vessels to work the death-inducing molecule Bim is required. The finding could lead to improved anti-cancer treatments that are based on a two- or three-pronged attack on both the tumor and its blood supply.

Cancers such as breast cancer, lung cancer and melanoma release the blood vessel growth factor, VEGF, to encourage blood vessels to grow within the tumor, supplying it with nutrients. Tumors can be treated with anti-cancer medications that kill the cancer cells, and anti-angiogenic medications that starve the tumour by attacking its blood supply. The study suggests that a third type of medication, BH3-mimetics, may enhance the tumor-killing effect of anti-cancer and anti-angiogenic medications.
Credit: Walter and Eliza Hall Institute

Scientists at the Walter and Eliza Hall Institute have discovered a key molecule needed to kill the blood vessels that supply tumours.

The research team from the institute's Molecular Genetics of Cancer and Cancer and Haematology divisions found that for anti-cancer therapies that target tumour blood vessels to work the death- inducing molecule Bim is required. The finding could lead to improved anti-cancer treatments that are based on a two- or three-pronged attack on both the tumour and its blood supply. The research will be published online in the Journal of Experimental Medicine.

The growth of solid tumours, such as lung cancer, breast cancer and melanoma, depends on nutrients and oxygen being provided by the tumour blood supply. Cancer cells encourage the growth of blood vessels to feed a tumour by producing the hormone-like protein, vascular endothelial growth factor (VEGF). The research by Drs Edwina Naik, Leigh Coultas and Lorraine O'Reilly, and Professors Jerry Adams and Andreas Strasser showed that VEGF produced by tumours blocks production of Bim in the cells that line the tumour blood vessels.

New 'anti-angiogenic' medications that attack the blood vessels within tumours are showing promise in starving many types of cancers by reducing their blood supply.

In this study, in experimental melanoma, lung cancer and breast cancer models, Bim levels increased in the cells lining the blood vessels when VEGF was depleted by anti-angiogenic drugs, ultimately killing the blood vessel cells. VEGF depletion reduced the number of blood vessels in tumours, making the tumours shrink. However, in mice in which the blood vessels do not express Bim, VEGF depletion did not affect the number of tumour-associated blood vessels, and tumours grown in Bim-deficient mice did not respond to anti-angiogenic treatments.

Dr Strasser said this finding suggests that strategies for treating tumours by attacking the tumour blood supply could be optimised by incorporating drugs called BH3-mimetics that cause cell death by acting like Bim at a molecular level. "Similarly, therapies that increase the amount of Bim in tumour blood vessels could enhance the effects of anti-angiogenic agents," Dr Strasser said.

"BH3 mimetics may have two beneficial effects in cancer therapy. Our previous research had showed they can directly trigger death in tumour cells, particularly when the tumour is also attacked by chemotherapeutic drugs. We now think BH3-mimetics could also impact tumour cells indirectly by killing endothelial cells within tumours.

"This suggests that a promising new approach to the therapy of solid tumours may be to use a three-medication combination of a drug that specifically targets the tumour cell, an anti- angiogenic agent to impair the tumour blood vessels, plus a BH3 mimetic that will help the anti- tumour drug to directly kill the tumour cells and also will help the anti-angiogenic agent to kill the intra-tumoral endothelial cells, which in turn will starve the tumour, causing even more tumour cell death."

The research was supported by the Cancer Council Victoria, the National Health and Medical Research Council, the Australian Research Council, the US National Institutes of Health, the Leukemia and Lymphoma Society and Genentech.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Edwina Naik, Lorraine A. O'Reilly, Marie-Liesse Asselin-Labat, Delphine Merino, Ann Lin, Michele Cook, Leigh Coultas, Philippe Bouillet, Jerry M. Adams, Andreas Strasser. Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Experimental Medicine, 2011; DOI: 10.1084/jem.20100951

Cite This Page:

Walter and Eliza Hall Institute. "New strategy to attack tumor-feeding blood vessels." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110606112814.htm>.
Walter and Eliza Hall Institute. (2011, June 15). New strategy to attack tumor-feeding blood vessels. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/06/110606112814.htm
Walter and Eliza Hall Institute. "New strategy to attack tumor-feeding blood vessels." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606112814.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins