Featured Research

from universities, journals, and other organizations

Neutron analysis explains dynamics behind best thermoelectric materials

Date:
June 7, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Neutron analysis of thermoelectric materials could spur the development of a broader range of products with the capability to transform heat to electricity.

Neutron scattering experiments performed at ORNL show that lead telluride exhibits a strong anharmonic coupling between its optical and acoustic lattice vibrations, with a drop in thermal conductivity resembling a waterfall in this data image. This newly discovered coupling helps explain the low thermal conductivity that makes lead telluride a promising material for thermoelectric devices.
Credit: ORNL

Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Department of Energy's Oak Ridge National Laboratory gain a deeper understanding of how thermoelectric materials work. The analysis could spur the development of a broader range of products with the capability to transform heat to electricity.

Researchers performed experiments at both of ORNL's neutron facilities -- the Spallation Neutron Source and the High Flux Isotope Reactor -- to learn why the material lead telluride, which has a similar molecular structure to common table salt, has very low thermal conductivity, or heat loss -- a property that makes lead telluride a compelling thermoelectric material.

"The microscopic origin of the low thermal conductivity is not well understood. Once we do understand it better we can design materials that perform better at converting heat to electricity," said Olivier Delaire, a researcher and Clifford Shull Fellow in ORNL's Neutron Sciences Directorate.

Delaire's research, reported in Nature Materials, shows that an unusual coupling of microscopic vibrational modes, called phonons, is responsible for the disruption of the dynamics that transport the thermal energy in lead telluride.

In typical crystalline materials, which have a lattice-like atomic structure, the conduction of heat is enhanced by the propagation of phonons along the lattice. The atoms conduct heat by vibrating in a chain, similar to vibrations propagating along a spring.

Delaire's team determined through analysis at the SNS that lead telluride, although having the same crystal lattice as rock salt, exhibits a strong coupling of phonons, which results in a disruption of the lattice effect and cancels the ability to conduct heat.

"The resolution of the SNS's Cold Neutron Chopper Spectrometer, along with the high flux, have been quite important to making these time of flight measurements," Delaire said.

By controlling thermal conductivity in thermoelectrics, less energy is dispersed and more heat can be directed to power generation. Today, thermoelectric materials are used to power the deep-space probes that explore the outer planets and solar system. Cruising beyond the range of solar collectors, the crafts' reactor thermoelectric generators use heat from decaying radioisotopes to generate power.

New, advanced thermoelectric materials could be used to develop more earthly applications, such as vehicle exhaust systems that convert exhaust heat into electricity, reducing the need for alternators. New thermoelectric materials could also help concentrate solar energy for power generation and recover waste heat for industrial processes.

Delaire's team performed additional neutron measurements with HFIR's triple-axis spectrometer. Data analysis has been facilitated through collaboration with ORNL's Materials Theory group. Samples were synthesized and characterized in ORNL's Correlated Electrons Materials group.

The work was funded by DOE's Office of Science as part of the Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Research Frontier Center.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M-H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, B. C. Sales. Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011; DOI: 10.1038/nmat3035

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutron analysis explains dynamics behind best thermoelectric materials." ScienceDaily. ScienceDaily, 7 June 2011. <www.sciencedaily.com/releases/2011/06/110606152212.htm>.
DOE/Oak Ridge National Laboratory. (2011, June 7). Neutron analysis explains dynamics behind best thermoelectric materials. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/06/110606152212.htm
DOE/Oak Ridge National Laboratory. "Neutron analysis explains dynamics behind best thermoelectric materials." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606152212.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins