Featured Research

from universities, journals, and other organizations

Neutron analysis explains dynamics behind best thermoelectric materials

Date:
June 7, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Neutron analysis of thermoelectric materials could spur the development of a broader range of products with the capability to transform heat to electricity.

Neutron scattering experiments performed at ORNL show that lead telluride exhibits a strong anharmonic coupling between its optical and acoustic lattice vibrations, with a drop in thermal conductivity resembling a waterfall in this data image. This newly discovered coupling helps explain the low thermal conductivity that makes lead telluride a promising material for thermoelectric devices.
Credit: ORNL

Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Department of Energy's Oak Ridge National Laboratory gain a deeper understanding of how thermoelectric materials work. The analysis could spur the development of a broader range of products with the capability to transform heat to electricity.

Researchers performed experiments at both of ORNL's neutron facilities -- the Spallation Neutron Source and the High Flux Isotope Reactor -- to learn why the material lead telluride, which has a similar molecular structure to common table salt, has very low thermal conductivity, or heat loss -- a property that makes lead telluride a compelling thermoelectric material.

"The microscopic origin of the low thermal conductivity is not well understood. Once we do understand it better we can design materials that perform better at converting heat to electricity," said Olivier Delaire, a researcher and Clifford Shull Fellow in ORNL's Neutron Sciences Directorate.

Delaire's research, reported in Nature Materials, shows that an unusual coupling of microscopic vibrational modes, called phonons, is responsible for the disruption of the dynamics that transport the thermal energy in lead telluride.

In typical crystalline materials, which have a lattice-like atomic structure, the conduction of heat is enhanced by the propagation of phonons along the lattice. The atoms conduct heat by vibrating in a chain, similar to vibrations propagating along a spring.

Delaire's team determined through analysis at the SNS that lead telluride, although having the same crystal lattice as rock salt, exhibits a strong coupling of phonons, which results in a disruption of the lattice effect and cancels the ability to conduct heat.

"The resolution of the SNS's Cold Neutron Chopper Spectrometer, along with the high flux, have been quite important to making these time of flight measurements," Delaire said.

By controlling thermal conductivity in thermoelectrics, less energy is dispersed and more heat can be directed to power generation. Today, thermoelectric materials are used to power the deep-space probes that explore the outer planets and solar system. Cruising beyond the range of solar collectors, the crafts' reactor thermoelectric generators use heat from decaying radioisotopes to generate power.

New, advanced thermoelectric materials could be used to develop more earthly applications, such as vehicle exhaust systems that convert exhaust heat into electricity, reducing the need for alternators. New thermoelectric materials could also help concentrate solar energy for power generation and recover waste heat for industrial processes.

Delaire's team performed additional neutron measurements with HFIR's triple-axis spectrometer. Data analysis has been facilitated through collaboration with ORNL's Materials Theory group. Samples were synthesized and characterized in ORNL's Correlated Electrons Materials group.

The work was funded by DOE's Office of Science as part of the Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Research Frontier Center.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M-H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, B. C. Sales. Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011; DOI: 10.1038/nmat3035

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutron analysis explains dynamics behind best thermoelectric materials." ScienceDaily. ScienceDaily, 7 June 2011. <www.sciencedaily.com/releases/2011/06/110606152212.htm>.
DOE/Oak Ridge National Laboratory. (2011, June 7). Neutron analysis explains dynamics behind best thermoelectric materials. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/06/110606152212.htm
DOE/Oak Ridge National Laboratory. "Neutron analysis explains dynamics behind best thermoelectric materials." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606152212.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins