Featured Research

from universities, journals, and other organizations

First telecommunications wavelength quantum dot laser grown on a silicon substrate

Date:
June 14, 2011
Source:
University College London - UCL
Summary:
A new generation of high-speed, silicon-based information technology has been brought a step closer by researchers in the UK. The team's research provides the first demonstration of an electrically driven, quantum dot laser grown directly on a silicon substrate (Si) with a wavelength (1300-nm) suitable for use in telecommunications.

Quantum dot laser fabricated on a silicon substrate at UCL.
Credit: Image courtesy of University College London

A new generation of high-speed, silicon-based information technology has been brought a step closer by researchers in the Department of Electronic and Electrical Engineering at UCL and the London Centre for Nanotechnology. The team's research, published in the journal Nature Photonics, provides the first demonstration of an electrically driven, quantum dot laser grown directly on a silicon substrate (Si) with a wavelength (1300-nm) suitable for use in telecommunications.

Related Articles


Silicon is the most widely used material for the fabrication of active devices in electronics. However, the nature of its atomic structure makes it extremely hard to realise an efficient light source in this material.

As the speed and complexity of silicon electronics increases, it is becoming harder to interconnect large information processing systems using conventional copper electrical interconnects. For this reason the field of silicon photonics (the development of optical interconnects for use with silicon electronics) is becoming increasingly important.

The ideal light source for silicon photonics would be a semiconductor laser, for high efficiency, direct interfacing with silicon drive electronics and high-speed data modulation capability. To date, the most promising approach to a light source for silicon photonics has been the use of wafer bonding to join compound semiconductor laser materials from which lasers can be made to a silicon substrate.

Direct growth of compound semiconductor laser material on silicon would be an attractive route to full integration for silicon photonics. However, the large differences in crystal lattice constant between silicon and compound semiconductors cause dislocations in the crystal structure that result in low efficiency and short operating lifetime for semiconductor lasers.

The UCL group has overcome these difficulties by developing special layers which prevent these dislocations from reaching the laser layer together with a quantum dot laser gain layer. This has enabled them to demonstrate an electrically pumped 1,300 nm wavelength laser by direct epitaxial growth on silicon. In a recent paper in Optics Express (Vol. 19 Issue 12, pp.11381-11386 (2011)) they report an optical output power of over 15 mW per facet at room temperature.

In related work the group, working with device fabrication colleagues at the EPSRC National Centre for III-V Technologies, have demonstrated the first quantum dot laser on a germanium (Ge) substrate by direct epitaxial growth. The laser, reported in Nature Photonics , (DOI: 10.1038/NPHOTON.2011.120, 12 June 2009) is capable of continuous operation at temperatures up to 70 deg. C and has a continuous output power of over 25 mW per facet.

Leader of the epitaxy research that enabled the creation of these lasers and Royal Society University Research Fellow in the UCL Department of Electronic and Electrical Engineering, Dr Huiyun Liu, said: "The use of the quantum dot gain layer offers improved tolerance to residual dislocations relative to conventional quantum well structures. Our work on germanium should also permit practical lasers to be created on the Si/Ge substrates that are an important part of the roadmap for future silicon technology."

Head of the Photonics Group in the UCL Department of Electronic and Electrical Engineering, Principal Investigator in the London Centre for Nanotechnology and Director of the EPSRC Centre for Doctoral Training in Photonic Systems Development, Professor Alwyn Seeds, said: "The techniques that we have developed permit us to realise the Holy Grail of silicon photonics -- an efficient, electrically pumped, semiconductor laser integrated on a silicon substrate. Our future work will be aimed at combining these lasers with waveguides and drive electronics leading to a comprehensive technology for the integration of photonics with silicon electronics."


Story Source:

The above story is based on materials provided by University College London - UCL. Note: Materials may be edited for content and length.


Journal References:

  1. Huiyun Liu, Ting Wang, Qi Jiang, Richard Hogg, Frank Tutu, Francesca Pozzi, Alwyn Seeds. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.120
  2. Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, Alwyn Seeds. 13-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Optics Express, 2011; 19 (12): 11381 DOI: 10.1364/OE.19.011381
  3. Huiyun Liu, Ting Wang, Qi Jiang, Richard Hogg, Frank Tutu, Francesca Pozzi, Alwyn Seeds. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.120

Cite This Page:

University College London - UCL. "First telecommunications wavelength quantum dot laser grown on a silicon substrate." ScienceDaily. ScienceDaily, 14 June 2011. <www.sciencedaily.com/releases/2011/06/110613014121.htm>.
University College London - UCL. (2011, June 14). First telecommunications wavelength quantum dot laser grown on a silicon substrate. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/06/110613014121.htm
University College London - UCL. "First telecommunications wavelength quantum dot laser grown on a silicon substrate." ScienceDaily. www.sciencedaily.com/releases/2011/06/110613014121.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins