Featured Research

from universities, journals, and other organizations

Molecular mechanism for some anti-arrhythmia drugs discovered

Date:
June 15, 2011
Source:
University of British Columbia
Summary:
Researchers -- using an innovative, atom-by-atom substitution method -- have uncovered the mechanism by which a particular class of drugs controls irregular heartbeats.

University of British Columbia researchers -- using an innovative, atom-by-atom substitution method -- have uncovered the mechanism by which a particular class of drugs controls irregular heartbeats.

The findings, published June 14 in the online journal Nature Communications, shed light on why certain anti-arrhythmic drugs (AADs) have dramatically different effects on the heart's behavior compared to others, and why the same drug can be beneficial in some instances and fatal in others. The discovery points the way toward development of better treatments for the condition, which is a leading cause of stroke.

AADs are typically categorized on the basis of their effects on the electrocardiogram (ECG), not on their inherent qualities or molecular mechanisms. Such sorting of drugs, while common in pharmacology, limits our ability to improve upon them, said principal investigator Chris Ahern, an Assistant Professor in the UBC Department of Anesthesiology, Pharmacology and Therapeutics.

"By understanding how these drugs work at the molecular level, we will be better able to pick and choose the traits we want -- and those we don't -- when developing new drugs for this dangerous condition," said Ahern, who is a member of the Life Sciences Institute at UBC and of the Brain Research Centre at UBC and the Vancouver Coastal Health Research Institute.

All three categories of Class 1 AADs, called Class 1a, 1b and 1c, bind to the same site within the cardiac sodium channel, a sophisticated protein that generates electrical impulses to the heart. Ahern, working with postdoctoral fellow Stephan Pless, in the same department, and Jason Galpin and Adam Frankel from the Faculty of Pharmaceutical Sciences, sought to discover whether the differences were due to varying levels of electrostatic interactions between the drugs and the amino acids in the channel.

They created artificial amino acids to mirror the behavior of the cardiac sodium channel, probing the AADs' structure and the contribution of electrical charge -- a technique that follows in the footsteps of UBC Nobel Laureate Michael Smith and has been used successfully by a few labs worldwide. The researchers substituted individual hydrogen atoms with fluorine atoms, which display different electrical characteristics, to see if those modifications affect the AADs' ability to bind to the cardiac sodium channel.

The various alterations of the amino acids were introduced into cells, and the researchers measured the resulting electrical current. They found that each substitution of a hydrogen atom with a fluorine atom lowered the level of AAD binding to the cardiac sodium channel.

"We did this in steps, and observed a clear trend with the Class 1b AADs," said Pless, who has been working at UBC since 2008 on a research fellowship from the Heart & Stroke Foundation of BC & Yukon. "The trend held over each atom replacement, which confirmed that electrostatic reactions are indeed taking place with the drugs. But we found little evidence of the same electrical interaction with 1a and 1c drugs."

The distinction of 1b drugs explains their particular ability to both rapidly change the heart's behaviour, and to rapidly "shut off," Pless said.

"By zeroing in on these molecular actions, drug developers will be better able to isolate the most desirable qualities of each drug -- as well as the most threatening -- to find a more effective, safer version," he said.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephan A. Pless, Jason D. Galpin, Adam Frankel, Christopher A. Ahern. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nature Communications, 2011; 2: 351 DOI: 10.1038/ncomms1351

Cite This Page:

University of British Columbia. "Molecular mechanism for some anti-arrhythmia drugs discovered." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110614115033.htm>.
University of British Columbia. (2011, June 15). Molecular mechanism for some anti-arrhythmia drugs discovered. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/06/110614115033.htm
University of British Columbia. "Molecular mechanism for some anti-arrhythmia drugs discovered." ScienceDaily. www.sciencedaily.com/releases/2011/06/110614115033.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins