Featured Research

from universities, journals, and other organizations

Neutrinos change flavors while crossing Japan: Findings shed light on why universe is made of matter instead of anti-matter

Date:
June 15, 2011
Source:
Duke University
Summary:
By shooting a beam of neutrinos through a small slice of the Earth under Japan, physicists say they've caught the particles changing their stripes in new ways. These observations may one day help explain why the universe is made of matter rather than anti-matter.

After traveling 295 km underneath Japan, a neutrino interacted with the giant Super-K detector and was recorded by its light detectors.
Credit: Courtesy of Chris Walter, Duke

By shooting a beam of neutrinos through a small slice of Earth under Japan, physicists say they've caught the particles changing their stripes in new ways. These observations may one day help explain why the universe is made of matter rather than anti-matter.

The T2K experiment has been using the Japan Proton Accelerator Research Complex, or J-PARC, located on the east coast, to shoot a beam of muon neutrinos 185 miles, or 295 kilometers, underground toward the Super-Kamiokande, or Super-K, detector in Kamioka, near Japan's west coast.

The goal of the experiment, which is part of a new generation of neutrino-tracking facilities, is to observe the particles changing "flavors" from muon neutrinos to electron neutrinos on this brief journey.

Neutrinos are elementary particles that come in three flavors -- muon, electron and tau. In past experiments, physicists have measured the change of muon neutrinos to tau neutrinos and electron neutrinos to muon neutrinos or tau neutrinos.

"But no one had seen muon neutrinos turn into electron neutrinos," said Chris Walter, a physicist at Duke who is part of the T2K collaboration, along with Duke physicist Kate Scholberg.

The T2K collaboration, a team of physicists from around the world, began observing the neutrinos for their transformations in January 2010. The group measured the neutrinos, determining their flavor near the accelerator and then again at Super-K. So far, scientists caught 88 neutrinos with their detector. Six of these likely began their lives as muon neutrinos and turned into electron neutrinos on their way to Super-K.

"As it stands, this result is extremely interesting, but we are just getting started," Walter said. He explained that the T2K team has taken a little less than two percent of the planned neutrino measurements, partly due to the East Japan earthquake that struck on March 11, 2011 and forced the shutdown of T2K.

The preliminary findings were submitted to Physical Review Letters and announced at a press conference June 15 in Japan.

"We could see as many electron neutrino candidates as we saw by chance, something, like one out of every 150 times," Walter said. "This is why the title of our paper includes the word 'indications' as opposed to observation or measurement."

If the "indications" become "measurements," these T2K results will be the first to measure a muon-electron neutrino change. Scientists want this measurement to study a fundamental parameter of physics called theta-13, which controls the muon-electron neutrino switch. Walter said there is more than one way to measure theta-13 and that several experiments are currently competing to be the first.

"It's good news that we have evidence of a relatively large theta-13, since there are even more interesting measurements that can be done if it is big enough," he said.

If theta-13 is large, it will allow scientists to measure the difference between oscillations of neutrinos and oscillation of anti-neutrinos. Walter explained that in the early universe, "something caused there to be slightly more matter than anti-matter. When the matter and anti-matter annihilated each other, only that little bit of matter was left over. That matter is everything we see around us today. But no one understands how this happened."

"The difference between neutrino and anti-neutrino properties that we might measure in future experiments might give clues to how the excess matter was generated," Walter said.

Of course that all depends on how quickly T2K can come back online after being shut down from the earthquake. Currently, the experiment is slated to re-start at the end of 2011.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal References:

  1. The T2K Collaboration. Indication of Electron Neutrino Appearance from an Accelerator-produced O -axis Muon Neutrino Beam. Physical Review Letters, 2011; (submitted)
  2. The T2K Collaboration. The T2K Experiment. arXiv.org, 2011;

Cite This Page:

Duke University. "Neutrinos change flavors while crossing Japan: Findings shed light on why universe is made of matter instead of anti-matter." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110615103230.htm>.
Duke University. (2011, June 15). Neutrinos change flavors while crossing Japan: Findings shed light on why universe is made of matter instead of anti-matter. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/06/110615103230.htm
Duke University. "Neutrinos change flavors while crossing Japan: Findings shed light on why universe is made of matter instead of anti-matter." ScienceDaily. www.sciencedaily.com/releases/2011/06/110615103230.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins