Featured Research

from universities, journals, and other organizations

Radionuclide treatment against small tumors and metastases

Date:
June 16, 2011
Source:
Technische Universitaet Muenchen
Summary:
Medicine could very soon have a new ally in the fight against cancer: Terbium-161. Researchers have developed a new treatment method based on terbium-161 to treat smaller tumors and metastases in a more targeted way.

Medicine could very soon have a new ally in the fight against cancer: Terbium-161.
Credit: Andreas Heddergott/TUM

A cancer diagnosis is not necessarily a death sentence. There are now quite a number of possibilities to treat cancer. In addition to radiotherapy and chemotherapy, so-called radionuclide treatment has also become an important component in the fight against the mutated cells. It involves injecting radioactive elements, so-called nuclides, into the patient's circulatory system. Bonded to special molecules which preferentially attach themselves to cancer cells, the nuclides are pumped through the body by the heart until they finally find their target: a cancer cell. Having arrived there, they attach themselves to its cell walls, decay and thus release radiation into their surroundings. This attacks the cancer cells at close range and ideally destroys them.

Lutetium-177 is a nuclide already used for clinical applications. As it decays, fast electrons, so-called beta particles, are generated. In human tissue they have a range of up to 100 micrometers, five times the diameter of a tumor cell. They can therefore also damage healthy tissue in the vicinity. Dr. Silvia Lehenberger, a radiochemist at the TUM, has now succeeded in producing the Terbium-161 nuclide pure enough and in quantities sufficient for therapeutic applications. The nuclide emits not only the beta particles, but also conversion and Auger electrons, which have a range of only 0.5 to 30 micrometers. Their ranges match the size of tumor cells, making them ideal for the treatment of small tumors and metastases. "Moreover, the nuclide has a higher energy content than comparable particles," explains Silvia Lehenberger. "This means smaller doses can be administered to the patient, which in turn means a reduction in the radiation exposure."

Like lutetium or neodymium, which is familiar from high-power magnets, terbium is one of the so-called rare earth metals. The elements of the rare earths are extremely similar in chemical terms. Moreover, the raw material contains impurities which would not be permissible for a clinical application. It was therefore essential to develop suitable separation methods in order to be able to isolate the desired terbium-161 in as pure a state as possible. Coauthor and TUM colleague Christoph Barkhausen played a crucial role in the development of the separation method. The similarity of the rare earth elements also has an advantage, however: The medical application worked out for Lutetium-177 can also be used for Terbium-161.

A cooperation between Silvia Lehenberger and researchers at the Paul Scherrer Institute in Villingen (Switzerland) has already been able to prove the effectiveness of the nuclide on cancer cells in the laboratory. This is only the first step on the road to the final medication, however. It must pass a great many tests before it can be administered to people in hospital.

The researchers produced the Terbium-161 nuclide from Gadolinium-160 by neutron irradiation at the Garching FRM II research neutron source. Terbium-161 is ideal for therapeutic purposes because it has a half-life of only 6.9 days. This has the advantage that, after it has been produced, it can be transported to the clinic where it is to be used without losing much of its activity; it also means that the radiation has already decayed to about one percent of its original value after 50 days.

The work was undertaken as part of a cooperation between Radiochemistry Munich (RCM) at the TUM and the Laboratory for Radiochemistry and Environmental Chemistry and the Center for Radiopharmaceutical Sciences at the Paul Scherrer Institute (Villingen/Switzerland). The Terbium-161 was mainly produced at the neutron source of the Technische Universitaet Muenchen in Garching and additionally at the Institut Laue-Langevin in Grenoble and in the neutron source of the Helmholtz Center Berlin. Lutetium-177 for comparative tests was provided by Isotope Technologies Garching GmbH, which has been providing this nuclide to hospitals for many years for therapeutic purposes.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Silvia Lehenberger, Christoph Barkhausen, Susan Cohrs, Eliane Fischer, Jürgen Grünberg, Alexander Hohn, Ulli Köster, Roger Schibli, Andreas Türler, Konstantin Zhernosekov. The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nuclear Medicine and Biology, 2011; DOI: 10.1016/j.nucmedbio.2011.02.007

Cite This Page:

Technische Universitaet Muenchen. "Radionuclide treatment against small tumors and metastases." ScienceDaily. ScienceDaily, 16 June 2011. <www.sciencedaily.com/releases/2011/06/110616113009.htm>.
Technische Universitaet Muenchen. (2011, June 16). Radionuclide treatment against small tumors and metastases. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/06/110616113009.htm
Technische Universitaet Muenchen. "Radionuclide treatment against small tumors and metastases." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616113009.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) — Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) — Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) — According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) — The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins