Featured Research

from universities, journals, and other organizations

Single gene controls development of many forms of polycystic disease

Date:
June 19, 2011
Source:
Yale University
Summary:
A single gene is central in the development of several forms of polycystic kidney and liver disease, researchers report.

Cysts riddle a kidney from a patient with polycystic kidney disease.
Credit: Courtesy Yale University

A single gene is central in the development of several forms of polycystic kidney and liver disease, Yale School of Medicine researchers report in the June 19 issue of Nature Genetics.

The findings suggest manipulating activity of PKD1, the gene causing the most common form of polycystic kidney disease, may prove beneficial in reducing cysts in both liver and kidney.

"We found that these conditions are not the result of an all or nothing phenomenon," said Stefan Somlo, the C.N.H. Long Professor of Medicine and Genetics and Chief, Section of Nephrology and senior author of the study. "The less PKD1 is expressed, the more cysts develop. Conversely, expressing more PKD1 can slow the process."

The most common form of this condition is called autosomal dominant polycystic kidney disease (ADPKD), a condition passed on to children from one parent affected with the disease that is found in 600,000 people in the United States alone. Two genes, PKD1 and PKD2, are responsible for the onset of this condition.

PKD patients also develop cysts of the liver and Somlo and colleagues had previously identified families with identical cysts found only in the liver. They found two different genes were responsible for this related condition.

The researchers wanted to know how liver-only polycystic disease was related to ADPKD. In a series of experiments using both genetically engineered mouse models and biochemical studies, they found that the activity of only one of the four genes, PKD1, controlled cyst formation in the other forms of the disease. Experiments in mice showed that modulating dosage of PKD1 could slow disease progression.

"The data suggest the exciting possibility that targeting the activity of PKD1 may be beneficial for treatment of isolated polycystic liver disease, childhood recessive polycystic kidney disease and even a subset of adult ADPKD," said Somlo.

Yale is a leader in the investigation of PKD. For instance basic scientific research conducted at Yale has been crucial in helping to identify cilia, the tiny thread-like structure that extends from a cell's surface, as a critical component in cyst forming pathways. Yale has been the home of one of the four NIH-funded national centers of excellence in PKD research since 1999. In addition, the laboratory of Craig Crews, Lewis B. Cullman Professor of Molecular, Cellular, and Developmental Biology and Professor of Chemistry and of Pharmacology, has identified a compound that has shown promise in reducing number of cysts in some mouse models of PKD.

Sorin V Fedeles, Xin Tian, Anna-Rachel Gallagher, Michihiro Mitobe, Saori Nishio, Seung Hun Lee, Yiqiang Cai, Lin Geng and Craig Crews of Yale are co-authors of the paper.

The work was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sorin V Fedeles, Xin Tian, Anna-Rachel Gallagher, Michihiro Mitobe, Saori Nishio, Seung Hun Lee, Yiqiang Cai, Lin Geng, Craig M Crews, Stefan Somlo. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nature Genetics, 2011; DOI: 10.1038/ng.860

Cite This Page:

Yale University. "Single gene controls development of many forms of polycystic disease." ScienceDaily. ScienceDaily, 19 June 2011. <www.sciencedaily.com/releases/2011/06/110619133505.htm>.
Yale University. (2011, June 19). Single gene controls development of many forms of polycystic disease. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2011/06/110619133505.htm
Yale University. "Single gene controls development of many forms of polycystic disease." ScienceDaily. www.sciencedaily.com/releases/2011/06/110619133505.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins