Featured Research

from universities, journals, and other organizations

Self-assembling electronic nano-components

Date:
June 20, 2011
Source:
Karlsruhe Institute of Technology
Summary:
Magnetic storage media such as hard drives have revolutionized the handling of information: huge quantities of data are magnetically stored while relying on highly sensitive electronic components. And data capacities are expected to increase further through ever smaller components. Researchers have now developed a nano-component based on a mechanism observed in nature.

"Self-organization" of nano-devices: Magnetic molecules (green) arrange on a carbon nanotube (black) to build an electronic component.
Credit: C. Grupe, KIT

Magnetic storage media such as hard drives have revolutionized the handling of information: huge quantities of data are magnetically stored while relying on highly sensitive electronic components. And data capacities are expected to increase further through ever smaller components. Together with experts from Grenoble and Strasbourg, researchers of KIT's Institute of Nanotechnology (INT) have now developed a nano-component based on a mechanism observed in nature.

What if the very tininess of a component prevented one from designing the necessary tools for its manufacture? One possibility could be to "teach" the individual parts to self-assemble into the desired product. For fabrication of an electronic nano-device, a team of INT researchers headed by Mario Ruben adopted a trick from nature: Synthetic adhesives were applied to magnetic molecules in such a way that the latter docked on to the proper positions on a nanotube without any intervention. In nature, green leaves grow through a similar self-organizing process without any impetus from subordinate mechanisms. The adoption of such principles to the manufacture of electronic components is a paradigm shift, a novelty.

The nano-switch was developed by a European team of scientists from Centre National de la Recherche Scientifique (CNRS) in Grenoble, Institut de Physique et Chimie des Matιriaux at the University of Strasbourg, and KIT's INT. It is one of the invention's particular features that, unlike the conventional electronic components, the new component does not consist of materials such as metals, alloys or oxides but entirely of soft materials such as carbon nanotubes and molecules.

Terbium, the only magnetic metal atom that is used in the device, is embedded in organic material. Terbium reacts highly sensitively to external magnetic fields. Information as to how this atom aligns along such magnetic fields is efficiently passed on to the current flowing through the nanotube. The Grenoble CNRS research group headed by Dr. Wolfgang Wernsdorfer succeeded in electrically reading out the magnetism in the environment of the nano-component. The demonstrated possibility of addressing electrically single magnetic molecules opens a completely new world to spintronics, where memory, logic and possibly quantum logic may be integrated.

The function of the spintronic nano-device is described in the July issue of Nature Materials (DOI number: 10.1038/Nmat3050)for low temperatures of approximately one degree Kelvin, which is -272 degrees Celsius. Efforts are taken by the team of researchers to further increase the component's working temperature in the near future.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Urdampilleta, S. Klyatskaya, J-P. Cleuziou, M. Ruben, W. Wernsdorfer. Supramolecular spin valves. Nature Materials, 2011; DOI: 10.1038/nmat3050

Cite This Page:

Karlsruhe Institute of Technology. "Self-assembling electronic nano-components." ScienceDaily. ScienceDaily, 20 June 2011. <www.sciencedaily.com/releases/2011/06/110620094900.htm>.
Karlsruhe Institute of Technology. (2011, June 20). Self-assembling electronic nano-components. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2011/06/110620094900.htm
Karlsruhe Institute of Technology. "Self-assembling electronic nano-components." ScienceDaily. www.sciencedaily.com/releases/2011/06/110620094900.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) — UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) — China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins