Featured Research

from universities, journals, and other organizations

Versatile membrane makes large-scale energy-efficient separation possible

Date:
June 22, 2011
Source:
Universiteit van Amsterdam (UVA)
Summary:
Researchers in the Netherlands have developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner. The new membrane can probably be employed under industrial conditions on a large scale in the future. This has not been possible until now, because virtually all membranes developed so far are insufficiently stable. What is also striking about this discovery is that the functionality of the membrane can be adjusted by varying the structure. This new membrane can lead to significant energy and cost savings.

Researchers in the Netherlands have developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner.
Credit: Dirk Gillissen

Hessel Castricum from the University of Amsterdam has developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner. He conducted his research with colleagues from the University of Twente and the Energy research Centre of the Netherlands. The new membrane can probably be employed under industrial conditions on a large scale in the future. This has not been possible until now, because virtually all membranes developed so far are insufficiently stable. What is also striking about this discovery is that the functionality of the membrane can be adjusted by varying the structure. This new membrane can lead to significant energy and cost savings.

The results were singled out as a research highlight in the journal Advanced Functional Materials.

Membranes are an inexpensive means of separation compared, for example, to distillation: easy and energy-efficient (and therefore relatively cheap). The separation of molecular mixtures with a membrane is, however, a method that is currently rarely used, especially for large processes. This is mainly due to the fact that little or no systems have been sufficiently tested to be applied reliably. The limited stability of most materials is the main cause.

Variable by organic bridge

The newly developed type of membrane can be used for many years at high (relevant) temperatures in mixtures in which a lot of water is present. It is therefore extremely stable. The material also allows much faster transport of molecules than, for example, polymers.

The membrane is made from a hybrid material that has both ceramic and polymeric properties. The scientists discovered that it is possible to alter the characteristic building block of this membrane: an organic bridge between two silicon atoms. Because of this variation, the membrane can be optimised for separation of different mixtures.

By using short bridges, it is possible to make the membrane selective for the smallest molecules, such as hydrogen and water. In contrast, slightly larger molecules such as CO2 or alcohols can pass more easily through the membrane by using larger bridges. Moreover, the material can actually be made water-repellent, by using, for example, long organic bridges. As a result, industry can decide to adopt membrane technology sooner and for more processes. Examples of potential applications include the dewatering of bio-fuels, CO2 sequestration and hydrogen production.

For these techniques to be used in practice, the reliability of the new membrane technology needs to be examined on a larger scale than in a lab. In this respect, it is perhaps interesting that a pilot plant has recently been opened at Plant One in the Botlek area of Rotterdam. The first material developed will be tested there on a larger scale.


Story Source:

The above story is based on materials provided by Universiteit van Amsterdam (UVA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Hessel L. Castricum, Goulven G. Paradis, Marjo C. Mittelmeijer-Hazeleger, Robert Kreiter, Jaap F. Vente, Johan E. ten Elshof. Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group. Advanced Functional Materials, 2011; 21 (12): 2319 DOI: 10.1002/adfm.201002361

Cite This Page:

Universiteit van Amsterdam (UVA). "Versatile membrane makes large-scale energy-efficient separation possible." ScienceDaily. ScienceDaily, 22 June 2011. <www.sciencedaily.com/releases/2011/06/110622102329.htm>.
Universiteit van Amsterdam (UVA). (2011, June 22). Versatile membrane makes large-scale energy-efficient separation possible. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/06/110622102329.htm
Universiteit van Amsterdam (UVA). "Versatile membrane makes large-scale energy-efficient separation possible." ScienceDaily. www.sciencedaily.com/releases/2011/06/110622102329.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins