Featured Research

from universities, journals, and other organizations

Versatile membrane makes large-scale energy-efficient separation possible

Date:
June 22, 2011
Source:
Universiteit van Amsterdam (UVA)
Summary:
Researchers in the Netherlands have developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner. The new membrane can probably be employed under industrial conditions on a large scale in the future. This has not been possible until now, because virtually all membranes developed so far are insufficiently stable. What is also striking about this discovery is that the functionality of the membrane can be adjusted by varying the structure. This new membrane can lead to significant energy and cost savings.

Researchers in the Netherlands have developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner.
Credit: Dirk Gillissen

Hessel Castricum from the University of Amsterdam has developed a versatile membrane that is capable of separating gas and liquid mixtures in an energy-efficient manner. He conducted his research with colleagues from the University of Twente and the Energy research Centre of the Netherlands. The new membrane can probably be employed under industrial conditions on a large scale in the future. This has not been possible until now, because virtually all membranes developed so far are insufficiently stable. What is also striking about this discovery is that the functionality of the membrane can be adjusted by varying the structure. This new membrane can lead to significant energy and cost savings.

The results were singled out as a research highlight in the journal Advanced Functional Materials.

Membranes are an inexpensive means of separation compared, for example, to distillation: easy and energy-efficient (and therefore relatively cheap). The separation of molecular mixtures with a membrane is, however, a method that is currently rarely used, especially for large processes. This is mainly due to the fact that little or no systems have been sufficiently tested to be applied reliably. The limited stability of most materials is the main cause.

Variable by organic bridge

The newly developed type of membrane can be used for many years at high (relevant) temperatures in mixtures in which a lot of water is present. It is therefore extremely stable. The material also allows much faster transport of molecules than, for example, polymers.

The membrane is made from a hybrid material that has both ceramic and polymeric properties. The scientists discovered that it is possible to alter the characteristic building block of this membrane: an organic bridge between two silicon atoms. Because of this variation, the membrane can be optimised for separation of different mixtures.

By using short bridges, it is possible to make the membrane selective for the smallest molecules, such as hydrogen and water. In contrast, slightly larger molecules such as CO2 or alcohols can pass more easily through the membrane by using larger bridges. Moreover, the material can actually be made water-repellent, by using, for example, long organic bridges. As a result, industry can decide to adopt membrane technology sooner and for more processes. Examples of potential applications include the dewatering of bio-fuels, CO2 sequestration and hydrogen production.

For these techniques to be used in practice, the reliability of the new membrane technology needs to be examined on a larger scale than in a lab. In this respect, it is perhaps interesting that a pilot plant has recently been opened at Plant One in the Botlek area of Rotterdam. The first material developed will be tested there on a larger scale.


Story Source:

The above story is based on materials provided by Universiteit van Amsterdam (UVA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Hessel L. Castricum, Goulven G. Paradis, Marjo C. Mittelmeijer-Hazeleger, Robert Kreiter, Jaap F. Vente, Johan E. ten Elshof. Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group. Advanced Functional Materials, 2011; 21 (12): 2319 DOI: 10.1002/adfm.201002361

Cite This Page:

Universiteit van Amsterdam (UVA). "Versatile membrane makes large-scale energy-efficient separation possible." ScienceDaily. ScienceDaily, 22 June 2011. <www.sciencedaily.com/releases/2011/06/110622102329.htm>.
Universiteit van Amsterdam (UVA). (2011, June 22). Versatile membrane makes large-scale energy-efficient separation possible. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2011/06/110622102329.htm
Universiteit van Amsterdam (UVA). "Versatile membrane makes large-scale energy-efficient separation possible." ScienceDaily. www.sciencedaily.com/releases/2011/06/110622102329.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins