Featured Research

from universities, journals, and other organizations

Properties of 'confined' water within single-walled carbon nanotube pores clarified

Date:
June 23, 2011
Source:
American Institute of Physics
Summary:
Water and ice may not be among the first things that come to mind when you think about single-walled carbon nanotubes, but a Japan-based research team hoping to get a clearer understanding of the phase behavior of confined water in the cylindrical pores of carbon nanotubes zeroed in on confined water's properties and made some surprising discoveries.

This global temperature-diameter (T-D) phase diagram of water inside SWCNTs shows that, depending on the water content, hollow or filled ice will form. On the right, hollow- and filled-ice nanotubes can be calculated at low temperature for SWCNTs with diameters indicated with (a) and (b) in the lower portion of the phase diagram.
Credit: Yutaka Maniwa

Water and ice may not be among the first things that come to mind when you think about single-walled carbon nanotubes (SWCNTs), but a Japan-based research team hoping to get a clearer understanding of the phase behavior of confined water in the cylindrical pores of carbon nanotubes zeroed in on confined water's properties and made some surprising discoveries.

Related Articles


The team, from Tokyo Metropolitan University, Nagoya University, Japan Science and Technology Agency, and National Institute of Advanced Industrial Science and Technology, describes their findings in the American Institute of Physics' Journal of Chemical Physics.

Although carbon nanotubes consist of hydrophobic (water repelling) graphene sheets, experimental studies on SWCNTs show that water can indeed be confined in open-ended carbon nanotubes.

This discovery gives us a deeper understanding of the properties of nanoconfined water within the pores of SWCNTs, which is a key to the future of nanoscience. It's anticipated that nanoconfined water within carbon nanotubes can open the door to the development of a variety of nifty new nanothings -- nanofiltration systems, molecular nanovalves, molecular water pumps, nanoscale power cells, and even nanoscale ferroelectric devices.

"When materials are confined at the atomic scale they exhibit unusual properties not otherwise observed, due to the so-called 'nanoconfinement effect.' In geology, for example, nanoconfined water provides the driving force for frost heaves in soil, and also for the swelling of clay minerals," explains Yutaka Maniwa, a professor in the Department of Physics at Tokyo Metropolitan University. "We experimentally studied this type of effect for water using SWCNTs."

Water within SWCNTs in the range of 1.68 to 2.40 nanometers undergoes a wet-dry type of transition when temperature is decreased. And the team discovered that when SWCNTs are extremely narrow, the water inside forms tubule ices that are quite different from any bulk ices known so far. Strikingly, their melting point rises as the SWCNT diameter decreases -- contrary to that of bulk water inside a large-diameter capillary. In fact, tubule ice occurred even at room temperature inside SWCNTs.

"We extended our studies to the larger diameter SWCNTs up to 2.40 nanometers and successfully proposed a global phase behavior of water," says Maniwa. "This phase diagram (see image) covers a crossover from microscopic to macroscopic regions. In the macroscopic region, a novel wet-dry transition was newly explored at low temperature."

Results such as these contribute to a greater understanding of fundamental science because nanoconfined water exists and plays a vital role everywhere on Earth -- including our bodies. "Understanding the nanoconfined effect on the properties of materials is also crucial to develop new devices, such as proton-conducting membranes and nanofiltration," Maniwa notes.

Next up, the team plans to investigate the physical properties of confined water discovered so far inside SWCNTs (such as dielectricity and proton conduction). They will pursue this to obtain a better understanding of the molecular structure and transport properties in biological systems.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Properties of 'confined' water within single-walled carbon nanotube pores clarified." ScienceDaily. ScienceDaily, 23 June 2011. <www.sciencedaily.com/releases/2011/06/110622162315.htm>.
American Institute of Physics. (2011, June 23). Properties of 'confined' water within single-walled carbon nanotube pores clarified. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/06/110622162315.htm
American Institute of Physics. "Properties of 'confined' water within single-walled carbon nanotube pores clarified." ScienceDaily. www.sciencedaily.com/releases/2011/06/110622162315.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins