Featured Research

from universities, journals, and other organizations

Compound may provide drug therapy approach for Huntington's disease

Date:
June 24, 2011
Source:
UT Southwestern Medical Center
Summary:
Researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression of degenerative nerve disorders.

UT Southwestern Medical Center researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression of degenerative nerve disorders.

Related Articles


"Our studies have uncovered a new therapeutic target for Huntington's disease treatment and possibly for other neurodegenerative diseases," said Dr. Ilya Bezprozvanny, professor of physiology and senior author of the study, published in the June 23 issue of Chemistry and Biology. "In addition, we now have this new series of compounds that gives us a tool to study the pathogenesis of Huntington's disease."

Huntington's disease is a fatal genetic disorder in which certain brain cells waste away. More than 250,000 people in the U.S. have the disorder or are at risk for it. The most common form is adult-onset, with symptoms usually developing in patients in their mid-30s and 40s.

The disease results in uncontrolled movements, psychiatric disturbance, gradual dementia and eventually death. There is no therapy available currently to slow the progression of the disease.

Scientists at UT Southwestern found that quinazoline-derived compounds effectively block what is known as the store-operated calcium entry signaling pathway, which was never before implicated in Huntington nerve cells but that might be a therapeutic target in the disease.

Dr. Bezprozvanny's laboratory research has contributed to growing scientific evidence that suggests abnormalities in neuronal calcium signaling play an important role in the development of Huntington's disease. UT Southwestern researchers demonstrated in the current study that the quinoline compounds -- supplied by EnVivo -- protected brain cells.

"If this holds, this compound can be considered to have potential therapeutic application for Huntington's," he said. "As we ultimately seek a cure, we are encouraged to have found something that may slow the progress or delay the onset of the disease."

Other UT Southwestern researchers involved were Jun Wu, research scientist in physiology and lead author, and physiology research associates Xuesong Chen and Dr. Qingqing Wu. Researchers from EnVivo and the Institute of Cytology Russian Academy of Sciences, in St. Petersburg, also participated in the study.

The study, which used cultured mouse nerves, was funded by EnVivo, the National Institute of Neurological Disorders and Stroke, CHDI Foundation and the Russian Basic Research Foundation.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jun Wu, Hsin-Pei Shih, Vladimir Vigont, Lori Hrdlicka, Len Diggins, Carol Singh, Matt Mahoney, Richard Chesworth, Gideon Shapiro, Olga Zimina et al. Neuronal Store-Operated Calcium Entry Pathway as a Novel Therapeutic Target for Huntington's Disease Treatment. Chemistry & Biology, Volume 18, Issue 6, 777-793, 24 June 2011 DOI: 10.1016/j.chembiol.2011.04.012

Cite This Page:

UT Southwestern Medical Center. "Compound may provide drug therapy approach for Huntington's disease." ScienceDaily. ScienceDaily, 24 June 2011. <www.sciencedaily.com/releases/2011/06/110623151227.htm>.
UT Southwestern Medical Center. (2011, June 24). Compound may provide drug therapy approach for Huntington's disease. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/06/110623151227.htm
UT Southwestern Medical Center. "Compound may provide drug therapy approach for Huntington's disease." ScienceDaily. www.sciencedaily.com/releases/2011/06/110623151227.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins