Featured Research

from universities, journals, and other organizations

'Quantum magic' without any 'spooky action at a distance'

Date:
June 25, 2011
Source:
University of Vienna
Summary:
Quantum mechanical entanglement is at the heart of the famous quantum teleportation experiment and was referred to by Albert Einstein as "spooky action at a distance". Researchers have used a system which does not allow for entanglement, and still found results which cannot be interpreted classically.

The central part of the optical setup used to demonstrate that even a system which does not allow entanglement exhibits features commonly attributed to this phenomenon.
Credit: IQOQI; Jacqueline Godany 2011

Quantum mechanical entanglement is at the heart of the famous quantum teleportation experiment and was referred to by Albert Einstein as "spooky action at a distance." A team of researchers led by Anton Zeilinger at the University of Vienna and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences used a system which does not allow for entanglement, and still found results which cannot be interpreted classically.

Their findings were published in the latest issue of the journal Nature.

Asher Peres, a pioneer of quantum information theory, once remarked jokingly in a letter to a colleague (Dagmar Bruί): Entanglement is a trick 'quantum magicians' use to produce phenomena that cannot be imitated by 'classical magicians'. When two particles are entangled, measurements performed on one of them immediately affect the other, no matter how far apart the particles are. What if, in an experiment, one considers a system that does not allow for entanglement? Will the quantum magicians still have an advantage over the classical magicians?

Quantum physics beyond magic

This is the question the team of quantum physicists led by Anton Zeilinger from the Faculty of Physics at the University of Vienna and from the IQOQI of the Austrian Academy of Sciences addressed in their experiment. The physicists used a "qutrit" -- a quantum system consisting of a single photon that can assume three distinguishable states. "We were able to demonstrate experimentally that quantum mechanical measurements cannot be interpreted in a classical way even when no entanglement is involved," Radek Lapkiewicz explains. The findings relate to the theoretical predictions by John Stewart Bell, Simon B. Kochen, and Ernst Specker.

Quantum world versus everyday life

Quantum physics is in stark contrast with what we perceive and experience in our everyday lives and what we understand as "classical physics." Let us, for example, examine a globe: from a given point of view we can only see one respective hemisphere at any given time. When spinning the globe once around its axis we are able to construct a meaningful and "true" picture of our planet assuming that the shape of the continents stays the same, even when we cannot see them.

Therefore, by means of our experience and the assumptions made in classical physics, we can assign certain properties to a system without actually observing it. This is no longer the case if one pictures a "quantum globe." Contrary to a globe where -- due to the assumptions of classical properties -- the various pieces fit together as they do in a puzzle, the pictures of the quantum globe do not fit together. Yet the pattern is not random: it is possible to predict by how much the individual parts will differ from each other after an observation.


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Radek Lapkiewicz, Peizhe Li, Christoph Schaeff, Nathan K. Langford, Sven Ramelow, Marcin Wieśniak, Anton Zeilinger. Experimental non-classicality of an indivisible quantum system. Nature, 2011; 474 (7352): 490 DOI: 10.1038/nature10119

Cite This Page:

University of Vienna. "'Quantum magic' without any 'spooky action at a distance'." ScienceDaily. ScienceDaily, 25 June 2011. <www.sciencedaily.com/releases/2011/06/110624111942.htm>.
University of Vienna. (2011, June 25). 'Quantum magic' without any 'spooky action at a distance'. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/06/110624111942.htm
University of Vienna. "'Quantum magic' without any 'spooky action at a distance'." ScienceDaily. www.sciencedaily.com/releases/2011/06/110624111942.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins