Featured Research

from universities, journals, and other organizations

Rogue blood cells may contribute to post-surgery organ damage

Date:
June 27, 2011
Source:
Queen Mary, University of London
Summary:
A study sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected to the injury.

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected to the injury.

The study, published June 26 in Nature Immunology, examines the way certain white blood cells, called neutrophils move out of blood vessels to defend damaged organs against injury or infection.

This is normally a one-way journey but researchers were surprised to find that, in some cases, this process can go into reverse, with rogue super-activated neutrophils, re-entering the blood stream and causing damage to other parts of the body.

The researchers used a cutting edge imaging technique which allowed them to watch the movement of neutrophils, in three dimensions and in real time in mice. As they expected the neutrophils moved out of blood vessels and into tissues to tackle injury or infection and they showed that his process was being controlled by a protein on the surface of the blood vessels called JAM-C.

However, when they temporarily blocked the blood vessels, mimicking the trauma experienced by patients undergoing major surgery, JAM-C was lost from the blood vessels. When this happened the neutrophils seemed to loose their way. Cells that had already exited blood vessels returned to the blood stream and damaged other parts of the body. In particular, the researchers found that these confused but highly activated neutrophils lodged into blood vessels in the lungs where they appeared to cause inflammation and damage to lungs.

Further research on the JAM-C molecule and the properties of these rogue neutrophils could lead to the development of drugs aimed at reducing life threatening complications following major surgeries such as inflammation of the lungs.

Professor Sussan Nourshargh who led the study said: "This is a really exciting piece of research as we have been able to watch how white blood cells move out of blood vessels to enter parts of the body that need their help. But with the advanced imaging technique that we have developed we could also for the first time see neutrophils move back into blood vessels following trauma. The neutrophils that behave this way are very different from normal blood neutrophils in that they are highly activated and fully capable of causing damage to other organs."

"Neutrophils are usually our first line of defence against infection but they have the ability to cause many diseases. As we learn more about the complex processes that protect us against infections we also find ways of tackling inflammatory diseases where white blood cells are inappropriately switched on."


Story Source:

The above story is based on materials provided by Queen Mary, University of London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abigail Woodfin, Mathieu-Benoit Voisin, Martina Beyrau, Bartomeu Colom, Dorothιe Caille, Frantzeska-Maria Diapouli, Gerard B Nash, Triantafyllos Chavakis, Steven M Albelda, G Ed Rainger, Paolo Meda, Beat A Imhof, Sussan Nourshargh. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunology, 2011; DOI: 10.1038/ni.2062

Cite This Page:

Queen Mary, University of London. "Rogue blood cells may contribute to post-surgery organ damage." ScienceDaily. ScienceDaily, 27 June 2011. <www.sciencedaily.com/releases/2011/06/110626145301.htm>.
Queen Mary, University of London. (2011, June 27). Rogue blood cells may contribute to post-surgery organ damage. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/06/110626145301.htm
Queen Mary, University of London. "Rogue blood cells may contribute to post-surgery organ damage." ScienceDaily. www.sciencedaily.com/releases/2011/06/110626145301.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) — Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com
Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins