Featured Research

from universities, journals, and other organizations

Genetic 'conductor' involved with new brain cell production in adults

Date:
June 29, 2011
Source:
North Carolina State University
Summary:
A team of researchers has discovered more about how a gene connected to the production of new brain cells in adults does its job. Their findings could pave the way to new therapies for brain injury or disease.

A team of North Carolina State University researchers has discovered more about how a gene connected to the production of new brain cells in adults does its job. Their findings could pave the way to new therapies for brain injury or disease.

Related Articles


Most areas of the brain do not generate new brain cells, or neurons, after we are born. One exception is the olfactory bulb, the brain's scent processor, which continually produces new neurons. Dr. Troy Ghashghaei, assistant professor of neurobiology, had previously found a gene -- known as Foxj1-connected to the production of an area inside the olfactory bulb where stem cells could form. Ghashghaei and his team discovered that Foxj1 was an "off switch" that told neuronal stem cells to stop reproducing and triggered the development of a stem cell "niche" in the olfactory bulbs.

However, further experiments with newly developed genetically modified mice unexpectedly revealed that a fraction of Foxj1-expressing cells actually functioned as stem cells. But they only did so until the mouse reached the age equivalent of a human toddler, not throughout adulthood. In addition, the number of neurons generated by these cells was much lower than expected, which led to more questions about its function.

"Essentially, the experiments we did weren't giving us the numbers of neurons from Foxj1-expressing stem cells that we expected. We could have gotten disappointed with what may have been perceived as a road-block in our findings" says Ghashghaei. "If the gene was one that stem cells had to express in order to produce neurons, then we should have seen a greater number of neurons produced from the Foxj1-expressing stem cells. Instead, only about three percent of the olfactory neurons came from the Foxj1 stem cells. More importantly, we could not identify these unique neurons as belonging to known types of neurons in the olfactory system."

These findings and subsequent experimentation helped the team discover that in addition to being an off switch, the Foxj1 cellular lineage (i.e., Foxj1 expressing cells and their descendents) performs an important function as a "conductor," instructing the other stem cells in the olfactory bulb by secreting various molecules that affect the other stem cells' behavior and ensure their correct development into neurons. So a small number of Foxj1-expressing cells and their neuronal offspring direct other stem cells to continue reproducing, and may be telling them when to become functionally integrated neurons.

The research appears in the Journal of Neuroscience. Graduate students Benoit Jacquet, Huixuan Liang, and Guanxi Xiao, together with postdoctoral fellows Nagendran Muthusamy and Laura Sommerville contributed to the work.

"This finding is important because for the most part our brains cannot generate new neurons, nor can we efficiently use transplanted neurons to repair damage," Ghashghaei says. "Foxj1 expressing cells and their neurons seem to support zones within the brain where new neurons are created and integrated into existing neural circuits. If we can find out how to put these 'conductor' cells into other areas of the brain such as the spinal cord, it may lead to new cell-based therapies.

"This project took us on a roller-coaster ride -- but the ending is a testament to the power of creative thinking and persistence in scientific inquiry -- an achievement of which the clever and hardworking graduate students and postdoctoral fellows working on the problem should be very proud."

Ghashghaei's research is funded by the NIH and the American Federation for Aging Research. The Department of Molecular Biomedical Sciences is part of NC State's College of Veterinary Medicine.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. V. Jacquet, N. Muthusamy, L. J. Sommerville, G. Xiao, H. Liang, Y. Zhang, M. J. Holtzman, H. T. Ghashghaei. Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb. Journal of Neuroscience, 2011; 31 (25): 9368 DOI: 10.1523/JNEUROSCI.0171-11.2011

Cite This Page:

North Carolina State University. "Genetic 'conductor' involved with new brain cell production in adults." ScienceDaily. ScienceDaily, 29 June 2011. <www.sciencedaily.com/releases/2011/06/110629122805.htm>.
North Carolina State University. (2011, June 29). Genetic 'conductor' involved with new brain cell production in adults. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/06/110629122805.htm
North Carolina State University. "Genetic 'conductor' involved with new brain cell production in adults." ScienceDaily. www.sciencedaily.com/releases/2011/06/110629122805.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins