Featured Research

from universities, journals, and other organizations

HIV-inhibiting mechanism identified

Date:
July 1, 2011
Source:
Case Western Reserve University
Summary:
Researchers have discovered a long-sought cellular factor that works to inhibit HIV infection of myeloid cells, a subset of white blood cells that display antigens and hence are important for the body's immune response against viruses and other pathogens. The factor, a protein called SAMHD1, is part of the nucleic acid sensing machinery within the body's own immune system.

Researchers at Case Western Reserve University School of Medicine have discovered a long-sought cellular factor that works to inhibit HIV infection of myeloid cells, a subset of white blood cells that display antigens and hence are important for the body's immune response against viruses and other pathogens.

The factor, a protein called SAMHD1, is part of the nucleic acid sensing machinery within the body's own immune system. It keeps cells from activating immune responses to the cells own nucleic acids, thus preventing certain forms of autoimmunity from developing.

SAMHD1 factor, researchers have found, can also sense and interfere with infection of myeloid cells, such as macrophages and dendritic cells, with HIV-1 and related immunodeficiency viruses. As such, SAMHD1 prevents the synthesis of virus copies in these cells, according to research led by Jacek Skowronski, PhD, a professor in the Department of Molecular Biology and Microbiology and member of the Center for AIDS Research at the Case Western Reserve University School of Medicine.

The findings appear in a manuscript published in the June 30 issue of Nature featuring Dr. Skowronski as the paper's senior author. The research was carried out in his lab at Case Western Reserve in collaboration with a research group led by Michael P. Washburn, PhD, at the Stowers Institute for Medical Research in Kansas City.

This issue of Nature also carries an independent report by a team from France headed by Monsef Benkirane, PhD, that identifies SAMHD1 as a factor that limits HIV growth in myeloid cells. The research broadens the understanding of how the immune system of the infected people handles HIV, and how HIV evades the immune system's response.

"The identification of SAMHD1 and its function may help to explain why some infected individuals can control HIV infection better than others," Dr. Skowronski says. "Ultimately, it could also provide a basis for conceiving of new therapies and treatment approaches to block HIV infection and/or its replication in infected individuals, and to stimulate body's own immune response to HIV."

Prior to this research the normal function of SAMHD1 was thought to be the prevention of the inappropriate activation of a class of the anti-viral responses mediated by production of anti-viral factors termed interferons, in the absence of virus infection. Mutations in SAMHD1, as well as two other cellular genes that encode nucleases, TREX1 and RNAse H2, cause a condition called Acairdi-Goutieres syndrome (AGS). The condition mimics congenital viral infection, and is due to unwarranted induction of the immune system's interferons in the absence of the virus. SAMHD1 and other AGS-causing cell proteins work to dispose cellular nucleic acid debris, thereby preventing inappropriate activation of the interferon system.

In the work described in the Nature manuscript, the researchers led by Dr. Skowronski discovered that in addition to preventing inappropriate autoimmune responses such as those seen in AGS, SAMHD1 possesses the ability to inhibit infection of myeloid cells by HIV by effectively interfering with the production of viral nucleic acids. Through this action SAMHD1 may prevent efficient activation of immune responses to HIV-1 virus in infected individuals, Dr. Skowronski explains.

The research also shows HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) are able to overcome the protective mechanism within myeloid cells by using the protein Vpx they encode, to dispose of SAMHD1, thereby allowing infection with these viruses. Interestingly, viruses possessing Vpx, such as HIV-2, are much less pathogenic than HIV-1. This could be because by being able to establish infection in myeloid cells they provoke much more robust immune responses that HIV-1 does, since HIV-1 can not infect these cells efficiently, Dr. Skowronski says.

As a result, "One might expect that manipulation of SAMHD1 function in the context of HIV-1 infection may lead to more robust immune response to this virus" according to Dr. Skowronski.

Moving forward, researchers will focus on better understanding the molecular pathway SAMHD1 uses to inhibit HIV-1 infection. They will likewise strive to learn more about how SAMHD1 shapes the development of AIDS in HIV-infected individuals, Dr. Skowronski says.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kasia Hrecka, Caili Hao, Magda Gierszewska, Selene K. Swanson, Malgorzata Kesik-Brodacka, Smita Srivastava, Laurence Florens, Michael P. Washburn, Jacek Skowronski. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature, 2011; 474 (7353): 658 DOI: 10.1038/nature10195

Cite This Page:

Case Western Reserve University. "HIV-inhibiting mechanism identified." ScienceDaily. ScienceDaily, 1 July 2011. <www.sciencedaily.com/releases/2011/06/110629132525.htm>.
Case Western Reserve University. (2011, July 1). HIV-inhibiting mechanism identified. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/06/110629132525.htm
Case Western Reserve University. "HIV-inhibiting mechanism identified." ScienceDaily. www.sciencedaily.com/releases/2011/06/110629132525.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins