Featured Research

from universities, journals, and other organizations

Quantum 'graininess' of space at smaller scales? Gamma-ray observatory challenges physics beyond Einstein

Date:
July 1, 2011
Source:
European Space Agency (ESA)
Summary:
The European Space Agency's Integral gamma-ray observatory has provided results that will dramatically affect the search for physics beyond Einstein. It has shown that any underlying quantum 'graininess' of space must be at much smaller scales than previously predicted.

Gamma-ray burst captured by Integral's IBIS instrument.
Credit: ESA/SPI Team/ECF

The European Space Agency's Integral gamma-ray observatory has provided results that will dramatically affect the search for physics beyond Einstein. It has shown that any underlying quantum 'graininess' of space must be at much smaller scales than previously predicted.

Einstein's General Theory of Relativity describes the properties of gravity and assumes that space is a smooth, continuous fabric. Yet quantum theory suggests that space should be grainy at the smallest scales, like sand on a beach.

One of the great concerns of modern physics is to marry these two concepts into a single theory of quantum gravity.

Now, Integral has placed stringent new limits on the size of these quantum 'grains' in space, showing them to be much smaller than some quantum gravity ideas would suggest.

According to calculations, the tiny grains would affect the way that gamma rays travel through space. The grains should 'twist' the light rays, changing the direction in which they oscillate, a property called polarisation.

High-energy gamma rays should be twisted more than the lower energy ones, and the difference in the polarisation can be used to estimate the size of the grains.

Philippe Laurent of CEA Saclay and his collaborators used data from Integral's IBIS instrument to search for the difference in polarisation between high- and low-energy gamma rays emitted during one of the most powerful gamma-ray bursts (GRBs) ever seen.

GRBs come from some of the most energetic explosions known in the Universe. Most are thought to occur when very massive stars collapse into neutron stars or black holes during a supernova, leading to a huge pulse of gamma rays lasting just seconds or minutes, but briefly outshining entire galaxies.

GRB 041219A took place on 19 December 2004 and was immediately recognised as being in the top 1% of GRBs for brightness. It was so bright that Integral was able to measure the polarisation of its gamma rays accurately.

Dr Laurent and colleagues searched for differences in the polarisation at different energies, but found none to the accuracy limits of the data.

Some theories suggest that the quantum nature of space should manifest itself at the 'Planck scale': the minuscule 10-35 of a metre, where a millimetre is 10-3 m.

However, Integral's observations are about 10 000 times more accurate than any previous and show that any quantum graininess must be at a level of 10-48 m or smaller.

"This is a very important result in fundamental physics and will rule out some string theories and quantum loop gravity theories," says Dr Laurent.

Integral made a similar observation in 2006, when it detected polarised emission from the Crab Nebula, the remnant of a supernova explosion just 6500 light years from Earth in our own galaxy.

This new observation is much more stringent, however, because GRB 041219A was at a distance estimated to be at least 300 million light years.

In principle, the tiny twisting effect due to the quantum grains should have accumulated over the very large distance into a detectable signal. Because nothing was seen, the grains must be even smaller than previously suspected.

"Fundamental physics is a less obvious application for the gamma-ray observatory, Integral," notes Christoph Winkler, ESA's Integral Project Scientist. "Nevertheless, it has allowed us to take a big step forward in investigating the nature of space itself."

Now it's over to the theoreticians, who must re-examine their theories in the light of this new result.


Story Source:

The above story is based on materials provided by European Space Agency (ESA). Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Laurent, D. Gφtz, P. Binιtruy, S. Covino, A. Fernandez-Soto. Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A. Physical Review D, 2011; 83 (12) DOI: 10.1103/PhysRevD.83.121301

Cite This Page:

European Space Agency (ESA). "Quantum 'graininess' of space at smaller scales? Gamma-ray observatory challenges physics beyond Einstein." ScienceDaily. ScienceDaily, 1 July 2011. <www.sciencedaily.com/releases/2011/06/110630111540.htm>.
European Space Agency (ESA). (2011, July 1). Quantum 'graininess' of space at smaller scales? Gamma-ray observatory challenges physics beyond Einstein. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/06/110630111540.htm
European Space Agency (ESA). "Quantum 'graininess' of space at smaller scales? Gamma-ray observatory challenges physics beyond Einstein." ScienceDaily. www.sciencedaily.com/releases/2011/06/110630111540.htm (accessed August 27, 2014).

Share This




More Space & Time News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins