Featured Research

from universities, journals, and other organizations

Key role of microRNAs in melanoma metastasis identified

Date:
July 11, 2011
Source:
NYU Langone Medical Center / New York University School of Medicine
Summary:
Researchers have identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously cause cancer cells to invade and immunosuppress the human body's ability to fight abnormal cells.

Researchers at the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously cause cancer cells to invade and immunosuppress the human body's ability to fight abnormal cells.

The new study is published in the July 11, 2011 issue of the journal Cancer Cell.

Researchers performed a miRNA analysis of human melanoma tissues, including primary and metastatic tumors. They found in both sets of tumor cells significantly high levels of a cluster of two miRNAs called miR-30b and miR-30d (miR-30b/30d). Higher levels of miR-30b/30d in melanoma tumor cells were linked to advanced stages of cancer, tumor progression, potential metastasis and reduced overall patient survival.

"Melanoma patients with higher levels of these miRNAs in their tumor cells are at greater risk for melanoma metastasis from their primary tumor," said Eva Hernando, PhD, senior author of the study and assistant professor in the Department of Pathology at NYU Langone Medical Center.

In the study, the benefit of silencing miRNAs in melanoma tumor cells was tested. This experiment led to the successful suppression of cell invasion, migration and metastatic melanoma. In addition, the study shows the over expression of miRNAs in tumor cells suppresses the normal function of GALNT7, an enzyme that modifies proteins on the surface of cells to control cell communication, cell migration and immune system surveillance. These miRNAs inhibit the role of GALNT7 in tumor cells leading to the spread of cancer.

"Our study results may have a direct clinical implication on the management of melanoma patients since these miRNAs can potentially serve as a new biomarker of a more aggressive tumor," said Avital Gaziel-Sovran, lead author of the study and NYU graduate student who conducted many of the experiments.

Melanoma is the deadliest form of skin cancer and one of the most invasive and aggressive tumor types. In the study, miRNAs were identified as strong promoters of the metastatic behavior of melanoma cells. miRNAs are the short pieces of RNA that regulate gene and cellular activities and are known to be linked to cancers like melanoma. However, this new research shows how these miRNAs increase melanoma cells' capacity to migrate, spread and metastasize.

"This study adds another piece to the melanoma puzzle showing how a few millimeter lesion on the skin's surface can quickly metastasize by invading other parts of the body like the lungs and brain so aggressively," said Dr. Hernando, a member of the Melanoma Program at the NYU Cancer Institute and the Center of Excellence on Cancers of the Skin at NYU Langone. "This study helps us better understand exactly why melanoma is so metastatic and suggests how miRNAs are a new potential therapeutic target for battling the disease."

The study was a collaboration between the Departments of Pathology, Dermatology, Environmental Medicine and Medicine, the Interdisciplinary Melanoma Cooperative Group and the NYU Center for Health Informatics and Bioinformatics at NYU Langone Medical Center and the Department of Chemistry at New York University.


Story Source:

The above story is based on materials provided by NYU Langone Medical Center / New York University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Avital Gaziel-Sovran, Miguel F. Segura, Raffaella Di Micco, Mary K. Collins, Douglas Hanniford, Eleazar Vega-Saenz de Miera, John F. Rakus, John F. Dankert, Shulian Shang, Robert S. Kerbel et al. miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell, Volume 20, Issue 1, 104-118, 12 July 2011 DOI: 10.1016/j.ccr.2011.05.027

Cite This Page:

NYU Langone Medical Center / New York University School of Medicine. "Key role of microRNAs in melanoma metastasis identified." ScienceDaily. ScienceDaily, 11 July 2011. <www.sciencedaily.com/releases/2011/07/110711164541.htm>.
NYU Langone Medical Center / New York University School of Medicine. (2011, July 11). Key role of microRNAs in melanoma metastasis identified. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/07/110711164541.htm
NYU Langone Medical Center / New York University School of Medicine. "Key role of microRNAs in melanoma metastasis identified." ScienceDaily. www.sciencedaily.com/releases/2011/07/110711164541.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins