Featured Research

from universities, journals, and other organizations

Breakthroughs in enabling future DRAM and RRAM

Date:
July 12, 2011
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
In the frame of its research on future memory architectures, researchers in Belgium made breakthroughs for both DRAM and RRAM memories. Such fundamental understanding of the filament properties is key to bridge the gap in the development of RRAM as a successor memory technology.

In the frame of its research on future memory architectures, imec has made breakthroughs for both DRAM and RRAM memories. For DRAM, MIMcap (metal-insulator-metal capacitor) was established as a clear candidate for 1X DRAM scaling. Imec demonstrated a record low leakage current and was able to explain the mechanism for leakage reduction, showing the path for further potential improvement. For Resistive RAM (RRAM), imec built a model to understand the properties of the filaments that result in a stable RRAM operation. Such fundamental understanding of the filament properties is key to bridge the gap in the development of RRAM as a successor memory technology.

One of the major technical challenges for the DRAM industry is the difficulty to maintain target leakage currents at lower Effective Oxide Thicknesses (EOT) to meet the DRAM capacitor scaling roadmap. Recently, imec demonstrated a novel RuOx/STO/TiN stack that showed a 100x reduction in leakage with DRAM MIMcap compatible dielectrics at 0.4nm equivalent oxide thickness (EOT). Now, imec has achieved a further 10x improvement by optimizing the stack, resulting in a record leakage current density (JG) of 2x10-8A/cm² at 0.4nm EOT. In addition, imec was able to explain the mechanism of leakage reduction. This allowed a path to demonstrate a further potential through lowering the trap density, to a theoretical leakage current density (JG) limit for trap-free STO of 10-15A/cm² at ~0.4nm EOT. These results demonstrate that the STO-based stack is a promising technology for DRAM scaling.

RRAM is a promising concept for future non-volatile memories. In RRAM, a dielectric, which is normally insulating, can be made conductive through a filament or conduction path formed by applying a sufficiently high voltage. Imec now has made breakthroughs in understanding the properties of the filaments. Imec established a.o. that the minimal achievable current after reset depends on the physical nature of the filaments, resulting in a direct method to predict that current from the filament properties. With these results, it is now possible to choose the desired properties of the filaments to ensure a stable RRAM operation.

These results were obtained in cooperation with imec's key partners in its core CMOS programs Globalfoundries, INTEL, Micron, Panasonic, Samsung, TSMC, Elpida, Hynix, Fujitsu and Sony.


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Breakthroughs in enabling future DRAM and RRAM." ScienceDaily. ScienceDaily, 12 July 2011. <www.sciencedaily.com/releases/2011/07/110712093625.htm>.
Interuniversity Microelectronics Centre (IMEC). (2011, July 12). Breakthroughs in enabling future DRAM and RRAM. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/07/110712093625.htm
Interuniversity Microelectronics Centre (IMEC). "Breakthroughs in enabling future DRAM and RRAM." ScienceDaily. www.sciencedaily.com/releases/2011/07/110712093625.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins