Featured Research

from universities, journals, and other organizations

New technology allows lenses to change color rapidly

Date:
July 18, 2011
Source:
University of Connecticut
Summary:
A chemist has developed new technology that allows lenses to change color instantly using an electric current triggered by a stimulus, such as light.

A University of Connecticut scientist has perfected a method for creating quick-changing, variable colors in films and displays, such as sunglasses, that could lead to the next hot fashion accessory.

The new technology also has captured the interest of the U.S. military as a way to assist soldiers who need to be able to see clearly in rapidly changing environments.

The process for creating the lenses, for which a patent is pending, also is less expensive and less wasteful to manufacturers than previous methods. The findings were published July 7 in the Journal of Materials Chemistry.

"This is the next big thing for transition lenses," says Greg Sotzing, a professor of chemistry in UConn's College of Liberal Arts and Sciences and a member of UConn's Polymer Program.

The typical material behind a transition lens is what's called a photochromic film, or a sheet of polymers that change color when light hits them. Sotzing's new technology does things slightly differently -- his electrochromic lenses are controlled by an electric current passing through them when triggered by a stimulus, such as light.

"They're like double pane windows with a gap between them," explains Sotzing. He and his colleagues squirt a mixture of polymers -- or as he calls it, "goop" -- in between the layers, creating the lens as it hardens. The mixture of polymers used in this lens, says Sotzing, creates less waste and is less expensive to produce than previous mixtures.

"The lifetime of sunglasses is usually very short," says Sotzing, who points out that people often misplace them. So by making the manufacturing less expensive, he says, commercial retailers will be able to produce more of them.

Another benefit of this material is that it can change colors as quickly as electricity passes through it -- which is virtually instantaneously. This process could be very useful for the military, Sotzing says. For example, if a person emerges from a dark passageway and into the desert, a lens that would alter its color instantly to complement the surroundings could mean life or death for some soldiers.

"Right now, soldiers have to physically change the lenses in their goggles," Sotzing says. "This will eliminate that need." Sotzing will begin a one-year sabbatical at the Air Force Academy in August, where he hopes to develop some of these ideas.

In November 2010, partially based on work supported by the Center for Science and Technology Commercialization's Prototype Fund, the UConn R&D Corporation started a company, called Alphachromics Inc., with Sotzing and colleague Michael Invernale, now a post-doctoral researcher at MIT, as founders. The university has a patent pending for this new technology, which is currently under option to the company. Alphachromics is also testing applications of these polymer systems for energy-saving windows and custom fabrics.

Currently in talks with sunglass manufacturers, Sotzing says that the world of Hollywood could have a market for this technology. He describes applications he calls "freaky," including colors that move back and forth across the glasses, evoking styles like those sported by Lady Gaga.

But Sotzing stresses that the best thing about this technology is the creation of business in Connecticut. Although the glasses won't be made here, the technology will be licensed out of the state and, he hopes, Alphachromics will continue to expand.

"We don't make the sunglasses," he says. "We make the formulation of what goes inside them."

Sotzing's collaborators on the paper are Invernale and Ph.D. students Yujie Ding, Donna Mamangun and Amrita Kumar. The research was funded by the tech/textile company ITP-GmbH.


Story Source:

The above story is based on materials provided by University of Connecticut. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yujie Ding, Michael A. Invernale, Donna M. D. Mamangun, Amrita Kumar, Gregory A. Sotzing. A simple, low waste and versatile procedure to make polymer electrochromic devices. Journal of Materials Chemistry, 2011; DOI: 10.1039/C1JM11141H

Cite This Page:

University of Connecticut. "New technology allows lenses to change color rapidly." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110712094050.htm>.
University of Connecticut. (2011, July 18). New technology allows lenses to change color rapidly. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/07/110712094050.htm
University of Connecticut. "New technology allows lenses to change color rapidly." ScienceDaily. www.sciencedaily.com/releases/2011/07/110712094050.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins