Featured Research

from universities, journals, and other organizations

Supramolecules get time to shine: Technique reveals interactions between nanotubes, photoluminescent materials

Date:
July 13, 2011
Source:
Rice University
Summary:
What looks like a spongy ball wrapped in strands of yarn -- but a lot smaller -- could be key to unlocking better methods for catalysis, artificial photosynthesis or splitting water into hydrogen, according to chemists who have created a platform to analyze interactions between carbon nanotubes and a wide range of photoluminescent materials.

Rice University researchers have found a way to bind carbon nanotubes to a porous silicate particles to create supramolecules. The new material allows researchers to test interactions between nanotubes and photoluminescent materials.
Credit: Martí Lab/Rice University

What looks like a spongy ball wrapped in strands of yarn -- but a lot smaller -- could be key to unlocking better methods for catalysis, artificial photosynthesis or splitting water into hydrogen, according to Rice University chemists who have created a platform to analyze interactions between carbon nanotubes and a wide range of photoluminescent materials.

Related Articles


The microscopic particles assembled in the lab of Angel Martí, an assistant professor of chemistry and bioengineering, combine single-walled carbon nanotubes with porous silicate materials that can absorb various molecules -- in this case, a ruthenium complex.

Martí, graduate student and lead author Avishek Saha and their colleagues reported their results July 12 in the Royal Society of Chemistry journal Chemical Science.

The ability to immobilize individual carbon nanotubes on a solid surface is interesting enough, but combining supramolecular systems with nanomaterials to produce hybrids is unique, they said.

"This can be used as a general platform to study the interaction of not only ruthenium complexes, but most photoactive molecules can be encapsulated within these porous silicates in a very simple way without chemical modification, without anything," Marti said.

Saha endured trial and error at every step in bringing the new particles to fruition, first figuring out the best way to keep long, single-walled carbon nanotubes produced by the Rice-born HiPco process from aggregating into bundles while allowing them to adhere to the particles.

The solution suggested by co-author Matteo Pasquali, a Rice professor in chemical and biomolecular engineering and in chemistry, involved dissolving the bundles in chlorosulfonic acid, which added protons -- and thus a positive charge -- to each nanotube.

That was the key to making nanotubes attractive to the three types of silicate particles tested: a commercial version of MCM-41, a mesoporous material used as a molecular sieve; another version of MCM-41 synthesized at Rice by Saha, and microporous Zeolyte-Y.

"We don't fully understand the mechanism, but the truth is they have a very strong affinity to silicon oxide networks," said Marti, describing the nanotube-wrapped particles. "Once they're protonated, they just bind."

But that wasn't enough to create a proper platform because protonated nanoparticles are no longer photoluminescent, a quality the researchers required to "see" such tiny structures under a spectroscope. "Protonated nanotubes are cool, but we want to have pristine nanotubes," Martí said.

"We were stuck there for a while. We tried a lot of things," he said. Acetone, ammonia, chloroform and other substances would deprotonate the nanotubes, but would also release them from the silicate sponges and allow them to clump. But vinylpyrrolidone (VP) did the trick by giving the nanotubes a polymer-like coating while returning them to their pristine states.

"This becomes interesting not only from the standpoint of getting individualized nanotubes on top of a surface, but also because we got fluorescence of nanotubes not from a solution, but from a solid material," Martí said.

The experiment went one critical step further when the researchers introduced ruthenium molecules to the mix. The silicates absorbed the ruthenium molecules, putting them into close proximity with an array of nanotubes. Under a spectroscope, the ruthenium complexes would photoluminesce, but they saw something unexpected in the interaction.

"Basically, we found out that if you put a photoactive species (ruthenium) there and excite it with light, two different processes happen. If it has carbon nanotubes close by, it will transfer an electron to the nanotubes. There's a charge transfer, and we knew that would happen," Martí said. "What we didn't expect when we analyzed the spectrum was seeing two different species of ruthenium complexes, one with a very short photoluminescence lifetime and one very long."

The researchers theorized that ruthenium in the center of the sponge was too far from the nanotubes to transfer electrons, so it retained its standard luminescence.

The research leads to some interesting possibilities for materials science, Saha said. "MCM itself has many applications (as a mesoporous sieve in fuel refineries, for instance), and carbon nanotubes are wonderful materials that many people are interested in. We're just combining these two into a hybrid material that might have the virtues of both."

While pore sizes in zeolites are locked by their crystalline structure at 0.7 nanometers, pores in MCM can be customized, as Saha has done, to absorb specific materials. "There are many things we can do to tune the system that we haven't explored," he said; combining metal molecules or even quantum dots with MCM and nanotubes might lead to interesting results.

Martí said putting charged nanotubes on the surface of a solid also opens the door to use them as catalysts in solar-energy conversion. "You need that driving force, that charge separation, for artificial photosynthesis," he said.

Co-authors of the paper are Rice graduate students Saunab Ghosh and Natnael Behabtu.

The Welch Foundation supported the research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Avishek Saha, Saunab Ghosh, Natnael Behabtu, Matteo Pasquali, Angel A. Mart. Single-walled carbon nanotubes shell decorating porous silicate materials: A general platform for studying the interaction of carbon nanotubes with photoactive molecules. Chemical Science, 2011; DOI: 10.1039/C1SC00323B

Cite This Page:

Rice University. "Supramolecules get time to shine: Technique reveals interactions between nanotubes, photoluminescent materials." ScienceDaily. ScienceDaily, 13 July 2011. <www.sciencedaily.com/releases/2011/07/110712152212.htm>.
Rice University. (2011, July 13). Supramolecules get time to shine: Technique reveals interactions between nanotubes, photoluminescent materials. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/07/110712152212.htm
Rice University. "Supramolecules get time to shine: Technique reveals interactions between nanotubes, photoluminescent materials." ScienceDaily. www.sciencedaily.com/releases/2011/07/110712152212.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins