Featured Research

from universities, journals, and other organizations

Galaxy-sized twist in time pulls violating particles back into line

Date:
July 19, 2011
Source:
University of Warwick
Summary:
A physicist in the UK has produced a galaxy-sized solution that explains one of the outstanding puzzles of particle physics, while leaving the door open to the related conundrum of why different amounts of matter and antimatter seem to have survived the birth of our Universe. Physicists would like a neat universe where the laws of physics are so universal that every particle and its antiparticle behave in the same way.

Illustration of frame dragging effect of a galaxy on a grid, with particle decay trails superimposed on top for artistic/illustrative purposes.
Credit: University of Warwick / Mark A. Garlick

A University of Warwick physicist has produced a galaxy-sized solution that explains one of the outstanding puzzles of particle physics, while leaving the door open to the related conundrum of why different amounts of matter and antimatter seem to have survived the birth of our Universe.

Physicists would like a neat universe where the laws of physics are so universal that every particle and its antiparticle behave in the same way.

However in recent years experimental observations of particles known as Kaons and B Mesons have revealed significant differences in how their matter and anti matter versions decay. This "Charge Parity violation" or "CP violation" is an awkward anomaly for some researchers but is a useful phenomenon for others as it may open up a way of explaining why more matter than anti matter appears to have survived the birth of our universe.

However Dr Mark Hadley, of the Department of Physics at the University of Warwick, believes he has found a testable explanation for apparent Charge Parity violation that preserves parity but also makes the Charge Parity violation an even more plausible explanation for the split between matter and antimatter.

Dr Hadley's paper (just published in EPL (Europhysics Letters) and entitled "The asymmetric Kerr metric as a source of CP violation") suggests that researchers have neglected the significant impact of the rotation of our Galaxy on the pattern of how sub atomic particles breakdown.

Dr Hadley says: "Nature is fundamentally asymmetric according to the accepted views of particle physics. There is a clear left right asymmetry in weak interactions and a much smaller CP violation in Kaon systems. These have been measured but never explained. This research suggests that the experimental results in our laboratories are a consequence of galactic rotation twisting our local space time. If that is shown to be correct then nature would be fundamentally symmetric after all. This radical prediction is testable with the data that has already been collected at Cern and BaBar by looking for results that are skewed in the direction that the galaxy rotates."

It is easy to neglect the effect of something as large as a galaxy because what seems most obvious to us is the local gravitation field of Earth or the Sun, both of which have a much more readily apparent gravitational affect on us than that exerted by our galaxy as a whole. However Dr Hadley believes that what is more important in this case is an affect generated by a spinning massive body.

The speed and angular momentum of such a massive spinning body creates "frame dragging" on its local space and time twisting the shape of that space time and creating time dilation effects.

The spin of our Galaxy has a twisting effect on our local space that is a million times stronger than that caused by Earth's spin.

When CP violation has been observed in the decay of B-Mesons the key difference observed between the break-up of matter and antimatter versions of the same particle is variation in the different decay rates. Curiously even though researchers observe that wide variation in the pattern of decay rates when those individual decay rates are added together they add up to the same total for both matter and antimatter versions of the same particle.

Dr Hadley believes that the "frame dragging" affect of the whole Galaxy explains all of those observations. Matter and antimatter versions of the same particle will retain exactly the same structure except that they will be mirror images of each other. It is not unreasonable to expect the decay of those particles to also begin as an exact mirror image of each other. However that is not how it ends. The decay may begin as a exact mirror image but the galactic frame dragging affect is significant enough to cause the different structures in each particle to experience different levels of time dilation and therefore decay in different ways. However the overall variation of the different levels of time dilation averages out when every particle in the decay is taken into account and CP violation disappears and parity is conserved.

The beauty of this theory is that it can also be tested. There are predictions that can be made and tested for. The massive array of data that already exists, that shows apparent CP violation in some decays, can be re-examined to see if it shows a pattern that is aligned with the rotation of the galaxy.

The paper only addressees how galactic scale frame dragging could explain experimental observations of apparent CP violation. However the explanation it provides also leaves open the door to those theorists who believe CP violation would be a useful tool to explain the separation of matter and antimatter at the birth of our universe and the subsequent apparent predominance of matter. Indeed that galactic scale frame dragging may even drag open that door a little wider. The universe's earliest structures, perhaps the very earliest, may have had sufficient mass and spin to generate frame dragging affects that could have had a significant effect the distribution of matter and antimatter.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. J. Hadley. The asymmetric Kerr metric as a source of CP violation. EPL (Europhysics Letters), 2011; 95 (2): 21003 DOI: 10.1209/0295-5075/95/21003

Cite This Page:

University of Warwick. "Galaxy-sized twist in time pulls violating particles back into line." ScienceDaily. ScienceDaily, 19 July 2011. <www.sciencedaily.com/releases/2011/07/110714072416.htm>.
University of Warwick. (2011, July 19). Galaxy-sized twist in time pulls violating particles back into line. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/07/110714072416.htm
University of Warwick. "Galaxy-sized twist in time pulls violating particles back into line." ScienceDaily. www.sciencedaily.com/releases/2011/07/110714072416.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins