Featured Research

from universities, journals, and other organizations

Discovery may overcome obstacle for quantum computing: Researchers find a way to quash decoherence

Date:
July 20, 2011
Source:
University of British Columbia
Summary:
Researchers have discovered how to quiet environmental decoherence, a major obstacle to realizing the enormous potential of quantum computing.

Quantum mechanics states that matter can be in more than one physical state at the same time -- like a coin simultaneously showing heads and tails. In small objects like electrons, physicists have had success in observing and controlling these simultaneous states, called "state superpositions."
Credit: Image courtesy of University of British Columbia

Researchers have made a major advance in predicting and quashing environmental decoherence, a phenomenon that has proven to be one of the most formidable obstacles standing in the way of quantum computing.

The findings -- based on theoretical work conducted at the University of British Columbia and confirmed by experiments at the University of California Santa Barbara -- are published online in the July 20 issue of the journal Nature.

Quantum mechanics states that matter can be in more than one physical state at the same time -- like a coin simultaneously showing heads and tails. In small objects like electrons, physicists have had success in observing and controlling these simultaneous states, called "state superposition."

Larger, more complex physical systems appear to be in one consistent physical state because they interact and "entangle" with other objects in their environment. This entanglement makes these complex objects "decay" into a single state -- a process called decoherence.

Quantum computing's potential to be exponentially faster and more powerful than any conventional computer technology depends on switches that are capable of state superposition -- that is, being in the "on" and "off" positions at the same time. Until now, all efforts to achieve such superposition with many molecules at once were blocked by decoherence.

"For the first time we've been able to predict and control all the environmental decoherence mechanisms in a very complex system, in this case a large magnetic molecule called the 'Iron-8 molecule,'" said Phil Stamp, UBC professor of physics and astronomy and director of the Pacific Institute of Theoretical Physics. "Our theory also predicted that we could suppress the decoherence, and push the decoherence rate in the experiment to levels far below the threshold necessary for quantum information processing, by applying high magnetic fields."

In the experiment, the California researchers prepared a crystalline array of Iron-8 molecules in a quantum superposition, where the net magnetization of each molecule was simultaneously oriented up and down. The decay of this superposition by decoherence was then observed in time -- and the decay was spectacularly slow, behaving exactly as the UBC researchers predicted.

"Magnetic molecules now suddenly appear to have serious potential as candidates for quantum computing hardware," said Susumu Takahashi, assistant professor of chemistry and physics at the University of Southern California. "This opens up a whole new area of experimental investigation with sizeable potential in applications, as well as for fundamental work."

Takahashi conducted the experiments while at UC Santa Barbara and analyzed the data while at UC Santa Barbara and the University of Southern California.

"Decoherence helps bridge the quantum universe of the atom and the classical universe of the everyday objects we interact with," Stamp said. "Our ability to understand everything from the atom to the Big Bang depends on understanding decoherence, and advances in quantum computing depend on our ability to control it."

The research was supported by the Pacific Institute of Theoretical Physics at UBC, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, the Keck Foundation, and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Takahashi, I. S. Tupitsyn, J. van Tol, C. C. Beedle, D. N. Hendrickson, P. C. E. Stamp. Decoherence in crystals of quantum molecular magnets. Nature, 2011; DOI: 10.1038/nature10314

Cite This Page:

University of British Columbia. "Discovery may overcome obstacle for quantum computing: Researchers find a way to quash decoherence." ScienceDaily. ScienceDaily, 20 July 2011. <www.sciencedaily.com/releases/2011/07/110720142125.htm>.
University of British Columbia. (2011, July 20). Discovery may overcome obstacle for quantum computing: Researchers find a way to quash decoherence. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/07/110720142125.htm
University of British Columbia. "Discovery may overcome obstacle for quantum computing: Researchers find a way to quash decoherence." ScienceDaily. www.sciencedaily.com/releases/2011/07/110720142125.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Breakthrough in Quantum Computing: Researchers Develop System That Resists 'quantum Bug'

July 20, 2011 — Scientists have taken the next major step toward quantum computing, which will use quantum mechanics to revolutionize the way information is processed. Using high magnetic fields, researchers managed ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins