Featured Research

from universities, journals, and other organizations

Artificial lung mimics real organ's design and efficiency: Small device works with air, pure oxygen not needed

Date:
July 26, 2011
Source:
Case Western Reserve University
Summary:
A new artificial lung has reached efficiencies akin to the genuine organ, using air -- not pure oxygen as current human-made lungs require -- for the source of the essential element. The device is a major step toward creating an easily portable and implantable artificial lung.

An artificial lung built by Cleveland researchers has reached efficiencies akin to the genuine organ, using air -- not pure oxygen as current human-made lungs require -- for the source of the essential element.

Use in humans is still years away, but for the 200 million lung disease sufferers worldwide, the device is a major step toward creating an easily portable and implantable artificial lung, said Joe Potkay, a research assistant professor in electrical engineering and computer science at Case Western Reserve University. Potkay is the lead author of the paper describing the device and research, in the journal Lab on a Chip.

The scientists built the prototype device by following the natural lung's design and tiny dimensions. The artificial lung is filled with breathable silicone rubber versions of blood vessels that branch down to a diameter less than one-fourth the diameter of human hair.

"Based on current device performance, we estimate that a unit that could be used in humans would be about 6 inches by 6 inches by 4 inches tall, or about the volume of the human lung. In addition, the device could be driven by the heart and would not require a mechanical pump," Potkay said.

Current artificial lung systems require heavy tanks of oxygen, limiting their portability. Due to their inefficient oxygen exchange, they can be used only on patients at rest, and not while active. And, the lifetime of the system is measured in days.

The Cleveland researchers focused first on improving efficiency and portability.

Potkay, who specializes in micro- and nano-technology, worked with Brian Cmolik, MD, an assistant clinical professor at Case Western Reserve School of Medicine and researcher at the Advanced Platform Technology Center and the Cardiothoracic Surgery department at the Louis Stokes Cleveland VA Medical Center. Michael Magnetta and Abigail Vinson, biomedical engineers and third-year students at Case Western Reserve University School of Medicine, joined the team and helped develop the prototype during the past two years.

The researchers first built a mould with miniature features and then layered on a liquid silicone rubber that solidified into artificial capillaries and alveoli, and separated the air and blood channels with a gas diffusion membrane.

By making the parts on the same scale as the natural lung, the team was able to create a very large surface-area-to-volume ratio and shrink the distances for gas diffusion compared to the current state of the art. Tests using pig blood show oxygen exchange efficiency is three to five times better, which enables them to use plain air instead of pure oxygen as the ventilating gas.

Potkay's team is now collaborating with researchers from Case Western Reserve's departments of biomedical engineering and chemical engineering to develop a coating to prevent clogging in the narrow artificial capillaries and on construction techniques needed to build a durable artificial lung large enough to test in rodent models of lung disease.

Within a decade, the group expects to have human-scale artificial lungs in use in clinical trials.

They envision patients would tap into the devices while allowing their own diseased lungs to heal, or maybe implant one as a bridge while awaiting a lung transplant -- a wait that lasts, on average, more than a year.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph A. Potkay, Michael Magnetta, Abigail Vinson, Brian Cmolik. Bio-inspired, efficient, artificial lung employing air as the ventilating gas. Lab on a Chip, 2011; DOI: 10.1039/C1LC20020H

Cite This Page:

Case Western Reserve University. "Artificial lung mimics real organ's design and efficiency: Small device works with air, pure oxygen not needed." ScienceDaily. ScienceDaily, 26 July 2011. <www.sciencedaily.com/releases/2011/07/110725123659.htm>.
Case Western Reserve University. (2011, July 26). Artificial lung mimics real organ's design and efficiency: Small device works with air, pure oxygen not needed. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2011/07/110725123659.htm
Case Western Reserve University. "Artificial lung mimics real organ's design and efficiency: Small device works with air, pure oxygen not needed." ScienceDaily. www.sciencedaily.com/releases/2011/07/110725123659.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins