Featured Research

from universities, journals, and other organizations

Pathogen research inspires robotics design for medicine and military

Date:
August 16, 2011
Source:
University of Tennessee at Knoxville
Summary:
Researchers have made significant findings about the swimming and attachment of the microorganism Giardia. The findings can aid in designs for drug discovery and underwater vehicles.

A pathogen that attacks the small intestines of humans and animals is serving as the inspiration for developing robots that can fight disease and aid in military operations.

Mingjun Zhang, associate professor in mechanical, aerospace and biomedical engineering, at the University of Tennessee, Knoxville, and his team have made significant findings about the swimming and attachment of the microorganism Giardia. Giardia causes one of the most common gastrointestinal diseases in the world, giardiasis. For 250 years, scientists have tried to understand how the microorganism is able to attach to a multitude of surfaces and swim in harsh environments -- enabling it to infect many kinds of species while most parasites have specific hosts. Zhang and his team have made significant progress to solve the puzzle.

"We found each of the four pairs of flagella conducts different functions," Zhang said of some of the team's findings. "This is amazing considering the length of the flagella is only about eight to 12 micrometers each, with a diameter of a few hundred nanometers."

The team's discovery can aid in fighting the pathogen's attack and others like it. The discovery may help to develop a way to block its attachment in the human intestine as an alternative for treating the disease. The discovery may also lead to bio-inspired swimming micro-robots for nanomedicine, such as site-specific controlled drug delivery and less invasive surgical procedures. For instance, micro-robots can navigate through the body to break up kidney stones, deliver drugs to specific sites after injection and reduce the invasiveness of surgery.

On a larger scale, knowing Giardia's inner workings may buoy an energy-efficient propulsion system for underwater vehicles or designs for quick turn and agile control of underwater vehicles. The findings of Giardia's unique attachment and landing procedures may also inspire a more accurate and quick surface attachment mechanism.

"Giardia seems to be one of the most sophisticated swimming microorganisms and is very efficient and intelligent in terms of controlling its swimming behavior and energy utilization," Zhang said. "It is a source rife with bio-inspiration and innovation."

Zhang conducted this study with Scott Lenaghan, a post-doctoral research associate; Zhili Zhang, assistant professor in the department of Mechanical, Aerospace and Biomedical Engineering, and Corinne Davis and William Henson, Chancellor's honors students in the department of Mechanical, Aerospace and Biomedical Engineering.

Their findings are published in the current edition of the Proceedings of the National Academy of Sciences. The research is being funded by the Office of Naval Research 2011 Young Investigator Program.


Story Source:

The above story is based on materials provided by University of Tennessee at Knoxville. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. C. Lenaghan, C. A. Davis, W. R. Henson, Z. Zhang, M. Zhang. PNAS Plus: High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1106904108

Cite This Page:

University of Tennessee at Knoxville. "Pathogen research inspires robotics design for medicine and military." ScienceDaily. ScienceDaily, 16 August 2011. <www.sciencedaily.com/releases/2011/08/110802162327.htm>.
University of Tennessee at Knoxville. (2011, August 16). Pathogen research inspires robotics design for medicine and military. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/08/110802162327.htm
University of Tennessee at Knoxville. "Pathogen research inspires robotics design for medicine and military." ScienceDaily. www.sciencedaily.com/releases/2011/08/110802162327.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins