Featured Research

from universities, journals, and other organizations

Bilayer graphene: Another step towards graphene electronics

Date:
August 12, 2011
Source:
University of Manchester
Summary:
The Nobel Prize winning scientists Professor Andre Geim and Professor Kostya Novoselov have taken a huge step forward in studying the wonder material graphene and revealing its exciting electronic properties for future electronic applications.

The Nobel Prize winning scientists Professor Andre Geim and Professor Kostya Novoselov have taken a huge step forward in studying the wonder material graphene and revealing its exciting electronic properties for future electronic applications.

Writing in the journal Science, the academics, who discovered the world's thinnest material at The University of Manchester in 2004, have revealed more about the electronic properties of its slightly fatter cousin -- bilayer graphene.

The researchers, from the universities of Manchester, Lancaster (UK), Nijmegen (the Netherland) and Moscow (Russia), have studied in detail the effect of interactions between electrons on the electronic properties of bilayer graphene.

They used extremely high-quality bilayer graphene devices which are prepared by suspending sheets of the material in vacuum. This way most of the unwanted scattering mechanisms for electrons in graphene could be eliminated, thus enhancing the effect of electron-electron interaction.

The latter could be seen as strong changes in the low-energy electronic spectrum -- it becomes strongly anisotropic, or directionally dependent. This is the first effect of its kind where the interactions between electrons in graphene can be clearly seen.

The reason for such unique electronic properties is that quasiparticles (electrons and holes, which carry electric current) in this material are very different from those in any other metals. They possess chiral symmetry (a symmetry between electrons and holes) of the sort which exist between particles and antiparticles in high-energy physics.

Due to such properties graphene-based materials are sometimes called 'CERN on a desk' -- referencing the Large Hadron Collider in Switzerland. This is just one of the reasons why the electronic properties are particularly exciting and often bring surprises.

Professor Geim and Professor Novoselov's pioneering work won them the Nobel Prize for Physics in 2010 for "groundbreaking experiments regarding the two-dimensional material graphene."

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon -- graphene.

Graphene is a novel two-dimensional material which can be seen as a monolayer of carbon atoms arranged in a hexagonal lattice. When two layers of graphene are bonded in a certain manner, they form bilayer graphene -- a very interesting and unusual material in its own right.

Both graphene and bilayer graphene possesses a number of unique properties, such as extremely high electron and thermal conductivities due to very high velocities of electrons and high quality of the crystals, as well as mechanical strength.

Professor Novoselov said: "The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications."

Professor Geim added: "High-quality bilayer graphene is certainly an exciting material in its own right, and it certainly has its own niche in applications."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov. Interaction-Driven Spectrum Reconstruction in Bilayer Graphene. Science, 2011; 333 (6044): 860 DOI: 10.1126/science.1208683

Cite This Page:

University of Manchester. "Bilayer graphene: Another step towards graphene electronics." ScienceDaily. ScienceDaily, 12 August 2011. <www.sciencedaily.com/releases/2011/08/110811141308.htm>.
University of Manchester. (2011, August 12). Bilayer graphene: Another step towards graphene electronics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/08/110811141308.htm
University of Manchester. "Bilayer graphene: Another step towards graphene electronics." ScienceDaily. www.sciencedaily.com/releases/2011/08/110811141308.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins