Featured Research

from universities, journals, and other organizations

New anti-inflammatory agents silence overactive immune response

Date:
August 16, 2011
Source:
Duke University Medical Center
Summary:
A new way to fight inflammation uses molecules called polymers to mop up the debris of damaged cells before the immune system becomes abnormally active, researchers report.

A new way to fight inflammation uses molecules called polymers to mop up the debris of damaged cells before the immune system becomes abnormally active, researchers at Duke University Medical Center report.

The discovery, published August 15 in the journal Proceedings of the National Academy of Sciences, offers a promising new approach to treat inflammatory auto-immune disorders such as lupus and multiple sclerosis, which are marked by an overactive immune response.

"Depending on the disease, cells that are damaged drive or perpetuate the immune response," said Bruce A. Sullenger, Ph.D., director of the Duke Translational Research Institute and senior author of the study. "We have shown that we can inhibit that process."

Sullenger said the idea for the new approach stems from earlier findings by Duke scientists and others that dying and diseased cells spill nucleic acids -- the building blocks of life that include DNA and RNA -- that then circulate at high levels in the bloodstream.

While DNA and RNA inside the cell regulate important functions such as growth and division, outside of cells in the blood, these nucleic acids serve as powerful signals to the immune system that something is amiss. Once activated, the immune system launches an attack to fight whatever caused the cell damage, whether an infection or toxic substance. Under normal circumstances, this inflammatory response eventually restores order.

In some cases, however, the inflammatory response becomes persistent and out of control, leading to tissue damage and causing symptoms such as fever and pain. Chronic inflammation has been implicated in lupus, multiple sclerosis, obesity, psoriasis, irritable bowel syndrome, arthritis and numerous other maladies.

The Duke scientists, working to interrupt this cycle, focused on a set of molecules called nucleic acid binding polymers that were designed to infiltrate the nucleic acid inside of cells and deactivate specific immune triggers.

"Then we had a 'eureka moment,'" Sullenger said. "Because the inflammatory nucleic acids are outside of cells, whereas DNA and RNA normally function inside cells, we realized that the polymers could bind to the external nucleic acids without disrupting intracellular functions of DNA and RNA."

It was a simple mop-up approach, and it worked as planned in experiments on mice: "We could use the polymers as molecular scavengers -- sponges to go around and soak up and neutralize those inflammatory nucleic acids so the immune system doesn't recognize them and go into the overdrive of inflammation," Sullenger said.

David S. Pisetsky, M.D., Ph.D., a rheumatologist at Duke and co-author of the study, said the anti-inflammatory approach has numerous potential applications, not only for auto-immune disorders, but also for the acute tissue damage of severe bacterial and viral infections, shock and injuries.

"One setting to test the effects of the polymers involves acute events such as injuries, where it may be easier to measure the presence of the nucleic acids in the blood and the effects of polymer binding," Pisetsky said, adding that the long-term safety of the new anti-inflammatory approach in humans remains unknown.

Sullenger said patents have been filed on the finding, and the team is pressing ahead to develop therapies. "At some level we've opened up this huge treasure chest of opportunities and now we have to figure out which way to go," he said.

In addition to Sullenger and Pisetsky, study co-authors include: Jaewoo Lee; Jang Wook Sohn; Ying Zhang; and Kam W. Leong.

The study was funded in part by the National Heart, Lung and Blood Institute. The researchers reported no conflicts of interest.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jaewoo Lee, Jang Wook Sohn, Ying Zhang, Kam W. Leong, David Pisetsky, and Bruce A. Sullenger. Nucleic acid-binding polymers as anti-inflammatory agents. PNAS, August 15, 2011 DOI: 10.1073/pnas.1105777108

Cite This Page:

Duke University Medical Center. "New anti-inflammatory agents silence overactive immune response." ScienceDaily. ScienceDaily, 16 August 2011. <www.sciencedaily.com/releases/2011/08/110815152031.htm>.
Duke University Medical Center. (2011, August 16). New anti-inflammatory agents silence overactive immune response. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/08/110815152031.htm
Duke University Medical Center. "New anti-inflammatory agents silence overactive immune response." ScienceDaily. www.sciencedaily.com/releases/2011/08/110815152031.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins