Featured Research

from universities, journals, and other organizations

Research team achieves first two-color STED microscopy of living cells

Date:
August 19, 2011
Source:
Optical Society of America
Summary:
Current applications of STED microscopy have been limited to single color imaging of living cells and multicolor imaging in "fixed" or preserved cells. However, to study active processes, such as protein interactions, a two-color STED imaging technique is needed in living cells. This has now been achieved for the first time.

Live cell two-color STED time series of HEK293 cells labeled with EGF-CLIPf-ATTO647N (magenta) and EGFR-SNAPf-Chromeo494 (green). Data has been normalized to correct for bleaching. The shown images have been cropped from the original raw data. Scale bar = 1 Όm.
Credit: Pellett et al., Biomed. Opt. Express 2, 2364-2371 (2011).

Researchers are able to achieve extremely high-resolution microscopy through a process known as stimulated emission depletion (STED) microscopy. This cutting-edge imaging system has pushed the performance of microscopes significantly past the classical limit, enabling them to image features that are even smaller than the wavelength of light used to study them.

They are able to achieve this extreme vision by using a single-color fluorescent dye that absorbs and releases energy, revealing cells and cellular components (such as proteins) in unprecedented detail.

Current applications of STED microscopy have been limited to single color imaging of living cells and multicolor imaging in "fixed" or preserved cells. However, to study active processes, such as protein interactions, a two-color STED imaging technique is needed in living cells. This was achieved for the first time by a team of researchers from Yale University, as reported in the August issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express.

The key to their success was in overcoming the challenges in labeling target proteins in living cells with dyes optimal for two-color STED microscopy. By incorporating fusion proteins, the researchers were able to improve the targeting between the protein and the dye, effectively bridging the gap. This allowed the researchers to achieve resolutions of 78 nanometers and 82 nanometers for 22 sequential two-color scans of two proteins -- epidermal growth factor and epidermal growth factor receptor -- in living cells.

The researchers expect that using this and other novel approaches will expand live cell STED microscopy to three and more colors, enabling 3-D imaging.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patrina A. Pellett, Xiaoli Sun, Travis J. Gould, James E. Rothman, Ming-Qun Xu, Ivan R. Corrκa, Joerg Bewersdorf. Two-color STED microscopy in living cells. Biomedical Optics Express, 2011; 2 (8): 2364 DOI: 10.1364/BOE.2.002364

Cite This Page:

Optical Society of America. "Research team achieves first two-color STED microscopy of living cells." ScienceDaily. ScienceDaily, 19 August 2011. <www.sciencedaily.com/releases/2011/08/110817101951.htm>.
Optical Society of America. (2011, August 19). Research team achieves first two-color STED microscopy of living cells. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/08/110817101951.htm
Optical Society of America. "Research team achieves first two-color STED microscopy of living cells." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817101951.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins