Featured Research

from universities, journals, and other organizations

Quick and cheap data storage? New multiferroic material is both electrically charged and magnetic

Date:
August 23, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
Researchers have engineered a material that exhibits a rare and versatile trait in magnetism at room temperature. It's called a "multiferroic," and it means that the material has properties allowing it to be both electrically charged (ferroelectric) and also the ability to be magnetic (ferromagnetic), with its magnetization controlled by electricity.

HZB staff scientist Florin Radu checks the BaTiO3 sample alignment in the ALICE diffractometer.
Credit: Image courtesy of Helmholtz Association of German Research Centres

HZB scientists observe how a material at room temperature exhibits a unique property -- a „multiferroic" material with potential uses for cheap and quick data storage.

Researchers at Helmholtz-Zentrum Berlin (HZB) in close collaboration with colleagues in France and UK, have engineered a material that exhibits a rare and versatile trait in magnetism at room temperature. It's called a "multiferroic," and it means that the material has properties allowing it to be both electrically charged (ferroelectric) and also the ability to be magnetic (ferromagnetic), with its magnetisation controlled by electricity.

This research was based around a material known as barium titanate (BaTiO3), a ferroelectric crystal that is promising to have potential uses in multi-state data storage while being cost effective. Their paper titled, "Interface-induced room-temperature multiferroicity in BaTiO3" appears now in Nature Materials.

"We've shown a way where you can obtain a multiferroic at room temperature," said Sergio Valencia, post doc researcher at HZB, referring to the scarcity of room temperature examples. "Barium titanate is ferromagnetic, so it means you have a net-magnetic moment you can really control by an electric field. The idea is that you can apply a voltage to the ferroelectric reversing the ferroelectric polarization which in turn affects the magnetization of your film [BaTiO3].

You can use this for example to write bits of information in memories of computers by only applying voltages, which is much cheaper in terms of power than traditionally applying magnetic fields."

It is this ability to control the material's magnetism and to be able to do it at room temperatures which makes this multiferroic potentially more cost-effective compared to other current multiferroic materials, which require complex arrangements to work.

Finding these two traits of ferromagnetic and ferroelectric working together in a compound is tricky due to the strange love-hate relationship exhibited by the two phenomena. What a ferromagnetic requires to exist is not the same as what a ferroelectric requires. Yet strangely, the two compliment each other and share a strong relationship, where one affects the other. The scarcity of these multiferroics however, is a result of this unique phenomenon combined with the few naturally occurring examples. "They are scarce and the problem is that most of them are multiferroic only at very low temperatures," added Valencia. "Therefore they are not useful for applications. If you have to go to -270 °C for a multiferroic then it's really complicated and expensive to implement them in room temperature working devices."

The researchers witnessed this multiferroic behaviour by investigating magnetic moments of Titanium (Ti) and Oxygen (O) atoms in BaTiO3 by using BESSY II synchrotron radiation source of Helmholtz-Zentrum Berlin.

They used a research method known as soft X-ray resonant magnetic scattering. The team was able to witness the dual traits of both ferroelectric and ferromagnetic in the thin films of BaTiO3. And since BaTiO3 is a non-magnetic ferroelectric material at room temperature, the ferromagnetism was induced by proximity to natural ferromagnets such as iron (Fe) and Cobalt (Co). In order to achieve these results the researchers deposited a ten atom thin film of iron and cobalt on top of a four atom thin BaTiO3 film. "These small thicknesses are indeed required for the implementation of such materials in devices to keep their small size," added Valencia.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. The original article was written by Eric Verbeten. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthιlιmy, M. Bibes. Interface-induced room-temperature multiferroicity in BaTiO3. Nature Materials, 2011; DOI: 10.1038/nmat3098

Cite This Page:

Helmholtz Association of German Research Centres. "Quick and cheap data storage? New multiferroic material is both electrically charged and magnetic." ScienceDaily. ScienceDaily, 23 August 2011. <www.sciencedaily.com/releases/2011/08/110822101946.htm>.
Helmholtz Association of German Research Centres. (2011, August 23). Quick and cheap data storage? New multiferroic material is both electrically charged and magnetic. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2011/08/110822101946.htm
Helmholtz Association of German Research Centres. "Quick and cheap data storage? New multiferroic material is both electrically charged and magnetic." ScienceDaily. www.sciencedaily.com/releases/2011/08/110822101946.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins