Featured Research

from universities, journals, and other organizations

Magnetic memories manipulated by voltage, not heat

Date:
September 1, 2011
Source:
American Institute of Physics
Summary:
Using voltage to encode magnetic data could lead to smaller, faster memory devices -- but not if heat is doing all the work. Fortunately, it is the voltage itself, and not the side effect of heating, that modifies the magnets' properties.

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is needed to encode information than in a traditional system.

But earlier this year, researchers reported that a key element of magnetization called coercivity is not controlled by voltage at all, but rather by an unfortunate byproduct of applying electricity to a material -- that is, by heat. (Coercivity is the tendency of a magnetic material to resist becoming demagnetized.)

To further explore whether voltage or heating is responsible for changes to a magnet's coercivity, scientists from Tsinghua University in Beijing, China, tested three structures commonly used in magnetic memory experiments. Their verdict: It's not the heat.

In a paper accepted for publication in the AIP's Journal of Applied Physics, the authors show that the voltage is directly controlling changes in the magnetic properties of all three of the tested materials. For example, the researchers demonstrate that the effect can be turned on and off almost instantaneously, whereas the changes should lag if heat is the cause. This is a good thing for the field, since a system that produces too much heat would slow down the performance of any real-world device made from this technology.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jing Wang, Jing Ma, Zheng Li, Yang Shen, Yuanhua Lin, C. W. Nan. Switchable voltage control of the magnetic coercive field via magnetoelectric effect. Journal of Applied Physics, 2011; 110 (4): 043919 DOI: 10.1063/1.3626748

Cite This Page:

American Institute of Physics. "Magnetic memories manipulated by voltage, not heat." ScienceDaily. ScienceDaily, 1 September 2011. <www.sciencedaily.com/releases/2011/08/110829114735.htm>.
American Institute of Physics. (2011, September 1). Magnetic memories manipulated by voltage, not heat. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/08/110829114735.htm
American Institute of Physics. "Magnetic memories manipulated by voltage, not heat." ScienceDaily. www.sciencedaily.com/releases/2011/08/110829114735.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins