Featured Research

from universities, journals, and other organizations

Magnetic memories manipulated by voltage, not heat

Date:
September 1, 2011
Source:
American Institute of Physics
Summary:
Using voltage to encode magnetic data could lead to smaller, faster memory devices -- but not if heat is doing all the work. Fortunately, it is the voltage itself, and not the side effect of heating, that modifies the magnets' properties.

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is needed to encode information than in a traditional system.

Related Articles


But earlier this year, researchers reported that a key element of magnetization called coercivity is not controlled by voltage at all, but rather by an unfortunate byproduct of applying electricity to a material -- that is, by heat. (Coercivity is the tendency of a magnetic material to resist becoming demagnetized.)

To further explore whether voltage or heating is responsible for changes to a magnet's coercivity, scientists from Tsinghua University in Beijing, China, tested three structures commonly used in magnetic memory experiments. Their verdict: It's not the heat.

In a paper accepted for publication in the AIP's Journal of Applied Physics, the authors show that the voltage is directly controlling changes in the magnetic properties of all three of the tested materials. For example, the researchers demonstrate that the effect can be turned on and off almost instantaneously, whereas the changes should lag if heat is the cause. This is a good thing for the field, since a system that produces too much heat would slow down the performance of any real-world device made from this technology.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jing Wang, Jing Ma, Zheng Li, Yang Shen, Yuanhua Lin, C. W. Nan. Switchable voltage control of the magnetic coercive field via magnetoelectric effect. Journal of Applied Physics, 2011; 110 (4): 043919 DOI: 10.1063/1.3626748

Cite This Page:

American Institute of Physics. "Magnetic memories manipulated by voltage, not heat." ScienceDaily. ScienceDaily, 1 September 2011. <www.sciencedaily.com/releases/2011/08/110829114735.htm>.
American Institute of Physics. (2011, September 1). Magnetic memories manipulated by voltage, not heat. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/08/110829114735.htm
American Institute of Physics. "Magnetic memories manipulated by voltage, not heat." ScienceDaily. www.sciencedaily.com/releases/2011/08/110829114735.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins