Featured Research

from universities, journals, and other organizations

Researchers expand capabilities of miniature analyzer for complex samples

Date:
September 8, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
A research team has extended the capabilities a a novel microfluidic lab-on-a-chip system for analyzing the chemical components of complex biological samples.

Illustration of a GEMBE device: A complex biological sample such as dissolved dirt or whole blood is pushed by an electric field toward a microchannel. Buffer fluid flowing in the opposite direction acts as a gate. Gradually reducing the bufffer flow slowly 'opens' the gate, allowing individual components from the sample to enter the microchannel when the pressure becomes weaker than the electric force pushing each component molecule. These molecules then travel past a detector that analyzes them. Unwanted components are kept out of the microchannel.
Credit: Strychalski, NIST

It's not often that someone can claim that going from a positive to a negative is a step forward, but that's the case for a team of scientists from the National Institute of Standards and Technology (NIST) and private industry. In a recent paper, the group significantly extended the reach of their novel microfluidic system for analyzing the chemical components of complex samples. The new work shows how the system, meant to analyze real-world, crude mixtures such as dirt or whole blood, can work for negatively charged components as well as it has in the past for positively charged ones.

In previous work, NIST researchers Elizabeth Strychalski and David Ross, in collaboration with Alyssa Henry of Applied Research Associates Inc. (Alexandria, Va.), demonstrated the use of a technique called GEMBE (for "gradient elution moving boundary electrophoresis") for analyzing complex samples. The NIST-developed system combines a simple microfluidic structure (two reservoirs connected by a microchannel), electrophoresis (which uses electricity to move sample components through a fluid) and pressure-driven flow.

Analyzing complex samples can be difficult because components in these samples (such as the fat globules in milk or proteins in blood) can "foul" or contaminate microfluidic channels. The traditional solution has been to remove contaminants with costly, time-consuming sample preparation prior to analysis.

GEMBE solves this problem by pumping fluid through the microchannel using a controlled pressure in the direction opposite to electrophoresis. This opposing pressure-driven flow acts as a "fluid gate" between the sample reservoir and the microchannel. Gradually reducing the pressure of the counterflow opens the "gate" a little bit at a time. A specific sample component is detected when the pressure flow becomes weak enough -- i.e. the "gate" opens wide enough -- that the component's electrophoretic motion pushes it against the pressure-driven flow and into the channel for detection. In this way, different components enter the channel at different times, based on their particular electrophoretic motion. Most importantly, the channel doesn't become fouled because the unwanted components in the sample are held out.

"Previously, we validated the GEMBE technique by quantitatively analyzing components from complex samples in solution that were cationic [positively charged] and could, therefore, be separated relatively easily from anionic [negatively charged] contaminants in a mixture," Strychalski says. "However, we needed a way to make GEMBE work when both the desired components and the contaminants are negatively charged."

For some samples, Strychalski says, this was achieved by choosing a different solution pH to change the electrophoretic motion of the unwanted components. In other cases, the addition of commercially available surface coatings to the sample did the trick without compromising the ease and robustness of the GEMBE technique.

"Additives can be selected that will interact with material in the sample that we don't want to study," Strychalski explains. "If we choose the right coating, it will slow the electrophoretic motion of contaminants relative to the desired components. This prevents the former from interfering with analysis while still allowing the latter to enter the microchannel for detection."

Strychalski and her colleagues plan to continue refining the GEMBE system, including an effort to define which surface coatings optimize the technique for specific components in a variety of complex samples.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Elizabeth A. Strychalski, Alyssa C. Henry, David Ross. Expanding the Capabilities of Microfluidic Gradient Elution Moving Boundary Electrophoresis for Complex Samples. Analytical Chemistry, 2011; 83 (16): 6316 DOI: 10.1021/ac2011894

Cite This Page:

National Institute of Standards and Technology (NIST). "Researchers expand capabilities of miniature analyzer for complex samples." ScienceDaily. ScienceDaily, 8 September 2011. <www.sciencedaily.com/releases/2011/08/110831115810.htm>.
National Institute of Standards and Technology (NIST). (2011, September 8). Researchers expand capabilities of miniature analyzer for complex samples. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/08/110831115810.htm
National Institute of Standards and Technology (NIST). "Researchers expand capabilities of miniature analyzer for complex samples." ScienceDaily. www.sciencedaily.com/releases/2011/08/110831115810.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins