Featured Research

from universities, journals, and other organizations

Physicists capture microscopic origins of thinning and thickening fluids

Date:
September 2, 2011
Source:
Cornell University
Summary:
In things thick and thin: Physicists now explain how fluids -- such as paint or paste -- behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear -- a specific way of stirring.

A snapshot of the configuration of particles suspended in fluid. The colored spheres indicate the presence of hydroclusters, which form at high rates of shear.
Credit: Cohen lab

In things thick and thin: Cornell physicists explain how fluids -- such as paint or paste -- behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear -- a specific way of stirring.

Observations by Xiang Cheng, Cornell post-doctoral researcher in physics and Itai Cohen, Cornell associate professor of physics, are the first to link direct imaging of the particle motions with changes in liquid viscosity.

Combining high-speed 3-D imaging techniques with a sensitive force-measuring device, the researchers tracked the motions of tiny particles suspended in the fluids while monitoring the thinning or thickening behaviors under shear.

They found that fluids become thinner when the particles -- which normally move in a random way -- get swept by the induced fluid flows.

In addition, they showed fluids became thicker or more viscous when particles were driven past one another too quickly for the fluid between them to drain or get out of the way. At such high speeds, the particles form clusters that lock together and make the fluid more viscous.

Grasping the physics of shear thinning and thickening isn't just good for at-home science experiments, knowledge of fluid phenomena are important for commerce. "In industry, understanding the thinning and thickening of materials is crucial for almost any transport process," Cohen said. These findings will improve the ability of scientists and engineers to handle complex fluids ranging from such industrial materials as paints, detergents and pastes, as well as such biological liquids as lymph and blood.

The researchers' observations refute theories that such changes in fluid viscosity result from the formation and destruction of particle layers under shear. The idea behind these theories is that, like lanes on a highway, streamlining particle trajectories reduces random collisions and enables particles to flow past each other more smoothly. When the particles form layers at low shear rates, the viscosity decreases, causing the fluid to thin; when the particle layers break up at high shear rates, the viscosity increases, causing the fluid to thicken.

However, by directly imaging the layering and measuring the fluid viscosity, the Cornell scientists found that while the amount of layering and delayering was comparable, the changes in viscosity were substantially different in the thinning and thickening regimes.

Moreover, the delayering occurred at shear rates much lower than those leading to thickening. Hence, they produced evidence that layering is not the major reason for viscosity changes in these suspensions.

The work was supported by the National Science Foundation, King Abdullah University of Science and Technology and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiang Cheng, Jonathan H. Mccoy, Jacob N. Israelachvili, Itai Cohen. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science, 2 September 2011: Vol. 333 no. 6047 pp. 1276-1279 DOI: 10.1126/science.1207032

Cite This Page:

Cornell University. "Physicists capture microscopic origins of thinning and thickening fluids." ScienceDaily. ScienceDaily, 2 September 2011. <www.sciencedaily.com/releases/2011/09/110901142108.htm>.
Cornell University. (2011, September 2). Physicists capture microscopic origins of thinning and thickening fluids. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/09/110901142108.htm
Cornell University. "Physicists capture microscopic origins of thinning and thickening fluids." ScienceDaily. www.sciencedaily.com/releases/2011/09/110901142108.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins