Featured Research

from universities, journals, and other organizations

Physicists capture microscopic origins of thinning and thickening fluids

Date:
September 2, 2011
Source:
Cornell University
Summary:
In things thick and thin: Physicists now explain how fluids -- such as paint or paste -- behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear -- a specific way of stirring.

A snapshot of the configuration of particles suspended in fluid. The colored spheres indicate the presence of hydroclusters, which form at high rates of shear.
Credit: Cohen lab

In things thick and thin: Cornell physicists explain how fluids -- such as paint or paste -- behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear -- a specific way of stirring.

Related Articles


Observations by Xiang Cheng, Cornell post-doctoral researcher in physics and Itai Cohen, Cornell associate professor of physics, are the first to link direct imaging of the particle motions with changes in liquid viscosity.

Combining high-speed 3-D imaging techniques with a sensitive force-measuring device, the researchers tracked the motions of tiny particles suspended in the fluids while monitoring the thinning or thickening behaviors under shear.

They found that fluids become thinner when the particles -- which normally move in a random way -- get swept by the induced fluid flows.

In addition, they showed fluids became thicker or more viscous when particles were driven past one another too quickly for the fluid between them to drain or get out of the way. At such high speeds, the particles form clusters that lock together and make the fluid more viscous.

Grasping the physics of shear thinning and thickening isn't just good for at-home science experiments, knowledge of fluid phenomena are important for commerce. "In industry, understanding the thinning and thickening of materials is crucial for almost any transport process," Cohen said. These findings will improve the ability of scientists and engineers to handle complex fluids ranging from such industrial materials as paints, detergents and pastes, as well as such biological liquids as lymph and blood.

The researchers' observations refute theories that such changes in fluid viscosity result from the formation and destruction of particle layers under shear. The idea behind these theories is that, like lanes on a highway, streamlining particle trajectories reduces random collisions and enables particles to flow past each other more smoothly. When the particles form layers at low shear rates, the viscosity decreases, causing the fluid to thin; when the particle layers break up at high shear rates, the viscosity increases, causing the fluid to thicken.

However, by directly imaging the layering and measuring the fluid viscosity, the Cornell scientists found that while the amount of layering and delayering was comparable, the changes in viscosity were substantially different in the thinning and thickening regimes.

Moreover, the delayering occurred at shear rates much lower than those leading to thickening. Hence, they produced evidence that layering is not the major reason for viscosity changes in these suspensions.

The work was supported by the National Science Foundation, King Abdullah University of Science and Technology and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiang Cheng, Jonathan H. Mccoy, Jacob N. Israelachvili, Itai Cohen. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science, 2 September 2011: Vol. 333 no. 6047 pp. 1276-1279 DOI: 10.1126/science.1207032

Cite This Page:

Cornell University. "Physicists capture microscopic origins of thinning and thickening fluids." ScienceDaily. ScienceDaily, 2 September 2011. <www.sciencedaily.com/releases/2011/09/110901142108.htm>.
Cornell University. (2011, September 2). Physicists capture microscopic origins of thinning and thickening fluids. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2011/09/110901142108.htm
Cornell University. "Physicists capture microscopic origins of thinning and thickening fluids." ScienceDaily. www.sciencedaily.com/releases/2011/09/110901142108.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins