Featured Research

from universities, journals, and other organizations

Control of fear in the brain decoded: Emotional balance is regulated by molecular factors behind stress response, study finds

Date:
September 7, 2011
Source:
Max-Planck-Gesellschaft
Summary:
When healthy people are faced with threatening situations, they react with a suitable behavioral response and do not descend into a state of either panic or indifference, as is the case, for example, with patients who suffer from anxiety. With the help of genetic studies on mice, scientists in Germany have discovered two opposing neuronal regulatory circuits for the generation and elimination of fear.

A) Schematic cross-section of a mouse brain showing the distribution of CRHR1 gene activity and the associated neurotransmitter specificity. B) Glutamatergic neuron of the hippocampus.
Credit: MPI of Psychiatry

When healthy people are faced with threatening situations, they react with a suitable behavioural response and do not descend into a state of either panic or indifference, as is the case, for example, with patients who suffer from anxiety.

With the help of genetic studies on mice, scientists from the Max Planck Institute of Psychiatry have discovered two opposing neuronal regulatory circuits for the generation and elimination of fear. Both are controlled by the stress-inducing messenger substance corticotropin-releasing hormone (CRH) and its type 1 receptor (CRHR1). The availability of these factors in neurons that release glutamate in brain areas of the limbic system activates a neuronal network which causes anxiety behaviour. Conversely, in dopamine-releasing neurons in the mid-brain, these factors give rise to behaviour that reduces fear. Because disorders of the stress factors may be observed in many patients with affective illnesses, the scientists suspect that the pathological alteration of the CRHR1-dependent regulatory circuits may be at the root of such emotional maladies.

An organism's response to stress is one of the key strategies essential to its survival in dealing with environmental factors. A balanced emotional reaction is of particular importance here and is subject to a highly complex molecular regulation system. Corticotropin-releasing hormone (CRH), which is released in the brain and places the organism in a state of alert, is a central molecular factor of the stress response. In addition to its effect as a hormonal messenger substance, it also controls the activity of neurons through binding to its receptors.

Many patients with anxiety disorders and depression display an altered hormonal stress response and have increased volumes of CRH in the brain. To investigate the underlying pathological processes, the research team working with Jan Deussing at the Max Planck Institute of Psychiatry carried out studies on the mouse model system. This enabled them to selectively deactivate an important factor, for example the CRH type 1 receptor, in certain cells, and thus establish the locations where the receptor is normally active and identify its function.

Using immunohistochemical methods and a series of transgenic mouse lines, the researchers succeeded in mapping the gene activity of the type 1 CRH receptor in the mouse brain in detail for the first time. Interestingly, a specific activity pattern emerged in different neuron groups which release different neuronal messenger substances. In regions of the forebrain (cortex, hippocampus, thalamus, septum), CRHR1 is detectable in glutamatergic and GABAergic neurons. As the limbic system, these regions are linked and, as the current study shows, trigger fear-inducing behaviour in glutamatergic neurons.

In regions of the midbrain (substantia nigra, ventral tegmental area), CRHR1 arises in dopamine-releasing neurons. The functional examination of the mice gave rise to the fairly sensational discovery that the stress hormone CRH actually reduces fear through its receptors in this part of the brain. These neurons demonstrably trigger the direct release of dopamine in regions of the forebrain and hence cause behaviour that overcomes fear.

The opposing effects of the fear-generating and fear-eliminating effect of the CRH/CRHR1 was demonstrated for the first time by this study and prompted the re-evaluation of the use of CRH-receptor antagonists as anxiolytic and antidepressant drugs. The authors speculate that the over-activity of the CRH system in patients with mood disorders is not general but probably limited to certain regulatory circuits in the brain, thus causing imbalanced emotional behaviour. "The use of CRH-receptor 1 antagonists could be particularly useful in patients in who one of these systems is out of sync," says research group leader Jan Deussing.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Refojo, M. Schweizer, C. Kuehne, S. Ehrenberg, C. Thoeringer, A. M. Vogl, N. Dedic, M. Schumacher, G. von Wolff, C. Avrabos, C. Touma, D. Engblom, G. Schutz, K.-A. Nave, M. Eder, C. T. Wotjak, I. Sillaber, F. Holsboer, W. Wurst, J. M. Deussing. Glutamatergic and Dopaminergic Neurons Mediate Anxiogenic and Anxiolytic Effects of CRHR1. Science, 2011; DOI: 10.1126/science.1202107

Cite This Page:

Max-Planck-Gesellschaft. "Control of fear in the brain decoded: Emotional balance is regulated by molecular factors behind stress response, study finds." ScienceDaily. ScienceDaily, 7 September 2011. <www.sciencedaily.com/releases/2011/09/110906085220.htm>.
Max-Planck-Gesellschaft. (2011, September 7). Control of fear in the brain decoded: Emotional balance is regulated by molecular factors behind stress response, study finds. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/09/110906085220.htm
Max-Planck-Gesellschaft. "Control of fear in the brain decoded: Emotional balance is regulated by molecular factors behind stress response, study finds." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906085220.htm (accessed September 17, 2014).

Share This



More Mind & Brain News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
'Fat Shaming' Might Actually Cause Weight Gain

'Fat Shaming' Might Actually Cause Weight Gain

Newsy (Sep. 11, 2014) A study for University College London suggests obese people who are discriminated against gain more weight than those who are not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins