Featured Research

from universities, journals, and other organizations

Robotic loader system achieves composite material testing milestone

Date:
September 6, 2011
Source:
Naval Research Laboratory
Summary:
The U.S. Navy's robotic materials testing system, NRL66.3, has achieved, to date, the highest industrial rates of fully-automated production mode functionality known to NRL researchers, yielding a total of 216 specimen tests at a rate of 26 per hour under six-degrees of freedom (6-DoF -- three translations and three rotations) multiaxiality conditions.

View of NRL66.3 6-DoF robotic material loader.
Credit: Image courtesy of Naval Research Laboratory

The Naval Research Laboratory robotic materials testing system, NRL66.3, has achieved, to date, the highest industrial rates of fully-automated production mode functionality known to NRL researchers, yielding a total of 216 specimen tests at a rate of 26 per hour under six-degrees of freedom (6-DoF -- three translations and three rotations) multiaxiality conditions.

Related Articles


The Computational Multiphysics Systems Laboratory of the Center of Computational Materials Science in the Materials Science Division completed the final construction phase of the NRL66.3, April 21, as well as its functional verification.

This system is designed to generate all the necessary material response data that enable the characterization of the constitutive behavior of complex, anisotropic materials in general and composite materials in particular.

"In addition to providing constitutive characterization data for establishing material properties, it is anticipated that the use of such systems can influence drastically the composite material design, certification and qualification methodologies used for sea and aerospace platforms built from high performance composite materials," says Dr. John Michopoulos, head, Computational Multiphysics Systems Laboratory.

The loader consists of six recursive instances of a parallel linkage hexapod configuration (with six base and six moving platform spherical joints connected by six linkages), as well as custom-developed stereoscopic machine vision for three dimensional (3D) full-field remote displacement and strain measurements and sensor subsystems for measuring the response of the tested materials.

This capability represents a dramatic improvement in terms of kinematic freedom, speed, efficiency and accuracy compared to traditional uniaxial systems as well as its multiaxial predecessors also developed at NRL. The specimens tested were machined with water-jet cutting out of standard autoclave-produced balanced layup composite plates.

These recent tests have been funded through Naval Research Laboratory core funding and the Office of Naval Research-International Field Office (ONR-IFO) and ONR through a Naval International Cooperative Opportunities in Science and Technology Program (NICOP) program. The collaborating members of this effort in addition to NRL were the USDA Forest Products Laboratory, a consortium of research institutions and organizations in Australia led by the Cooperative Research Centre for Advanced Composite Structures (CRC-ACS), Virginia Tech and Massachusetts Institute of Technology (MIT).


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Naval Research Laboratory. "Robotic loader system achieves composite material testing milestone." ScienceDaily. ScienceDaily, 6 September 2011. <www.sciencedaily.com/releases/2011/09/110906121248.htm>.
Naval Research Laboratory. (2011, September 6). Robotic loader system achieves composite material testing milestone. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2011/09/110906121248.htm
Naval Research Laboratory. "Robotic loader system achieves composite material testing milestone." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906121248.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins