Featured Research

from universities, journals, and other organizations

Carnivorous plant inspires coating that resists just about any liquids

Date:
September 22, 2011
Source:
Harvard University
Summary:
Adopting the pitcher plant's slick prey-catching strategy, a group of applied scientists have created a material that repels just about any type of liquid, including blood and oil, and does so even under harsh conditions like high pressure and freezing temperatures. The bio-inspired liquid repellence technology should find applications in biomedical fluid handling, fuel transport, and anti-fouling and anti-icing technologies. It could even lead to self-cleaning windows and improved optical devices.

This is an illustration showing a schematic of slippery surface and its characteristics of repelling many fluids present on the earth (as symbolized by the earth reflected on the liquid drop).
Credit: Courtesy of James C. Weaver and Peter Allen.

After a rain, the cupped leaf of a pitcher plant becomes a virtually frictionless surface. Sweet-smelling and elegant, the carnivore attracts ants, spiders, and even little frogs. One by one, they slide to their doom.

Related Articles


Adopting the plant's slick strategy, a group of applied scientists at Harvard have created a material that repels just about any type of liquid, including blood and oil, and does so even under harsh conditions like high pressure and freezing temperatures.

The bio-inspired liquid repellence technology, described in the September 22 issue of Nature, should find applications in biomedical fluid handling, fuel transport, and anti-fouling and anti-icing technologies. It could even lead to self-cleaning windows and improved optical devices.

"Inspired by the pitcher plant, we developed a new coating that outperforms its natural and synthetic counterparts and provides a simple and versatile solution for liquid and solid repellency," says lead author Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS), Director of the Kavli Institute for Bionano Science and Technology at Harvard, and a Core Faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

By contrast, current state-of-the-art liquid repellent surfaces have taken cues from a different member of the plant world. The leaves of the lotus resist water due to the tiny microtextures on the surface; droplets balance on the cushion of air on the tips of the surface and bead up.

The so-called lotus effect, however, does not work well for organic or complex liquids. Moreover, if the surface is damaged (e.g., scratched) or subject to extreme conditions, liquid drops tend to stick to or sink into the textures rather than roll away. Finally, it has proven costly and difficult to manufacture surfaces based on the lotus strategy.

The pitcher plant takes a fundamentally different approach. Instead of using burr-like, air-filled nanostructures to repel water, the plant locks in a water layer, creating a slick coating on the top. In short, the fluid itself becomes the repellent surface.

"The effect is similar to when a car hydroplanes, the tires literally gliding on the water rather than the road," says lead author Tak-Sing Wong, a postdoctoral fellow in the Aizenberg lab. "In the case of the unlucky ants, the oil on the bottom of their feet will not stick to the slippery coating on the plant. It's like oil floating on the surface of a puddle."

Inspired by the pitcher plant's elegant solution, the scientists designed a strategy for creating slippery surfaces by infusing a nano/microstructured porous material with a lubricating fluid. They are calling the resulting bio-inspired surfaces "SLIPS" (Slippery Liquid-Infused Porous Surfaces).

"Like the pitcher plant, SLIPS are slippery for insects, but they are now designed to do much more: they repel a wide variety of liquids and solids," says Aizenberg. SLIPS show virtually no retention, as very little tilt is needed to coax the liquid or solid into sliding down and off the surface.

"The repellent fluid surface offers additional benefits, as it is intrinsically smooth and free of defects," says Wong. "Even after we damage a sample by scraping it with a knife or blade, the surface repairs itself almost instantaneously and the repellent qualities remain, making SLIPS self-healing." Unlike the lotus, the SLIPS can be made optically transparent, and therefore ideal for optical applications and self-cleaning, clear surfaces.

In addition, the near frictionless effect persists under extreme conditions: high pressures (as much as 675 atmospheres, equivalent to seven kilometers under the sea) and humidity, and in colder temperatures. The team conducted studies outside after a snowstorm; SLIPS withstood the freezing temperatures and even repelled ice.

"Not only is our bio-inspired surface able to work in a variety of conditions, but it is also simple and cheap to manufacture," says co-author Sung Hoon Kang, a Ph.D. candidate in the Aizenberg lab. "It is easily scalable because you can choose just about any porous material and a variety of liquids."

To see if the surface was truly up to nature's high standards, they even did a few experiments with ants. In tests, the insects slid off the artificial surface or retreated to safer ground after only a few timorous steps.

The researchers anticipate that the pitcher plant-inspired technology, for which they are seeking a patent, could one day be used for fuel- and water-transport pipes, and medical tubing (such as catheters and blood transfusion systems), which are sensitive to drag and pressure and are compromised by unwanted liquid-surface interactions. Other potential applications include self-cleaning windows and surfaces that resist bacteria and other types of fouling (such as the buildup that forms on ship hulls). The advance may also find applications in ice-resistant materials and may lead to anti-sticking surfaces that repel fingerprints or graffiti.

"The versatility of SLIPS, their robustness and unique ability to self-heal makes it possible to design these surfaces for use almost anywhere, even under extreme temperature and pressure conditions," says Aizenberg. "It potentially opens up applications in harsh environments, such as polar or deep sea exploration, where no satisfactory solutions exist at present. Everything SLIPS!"

Aizenberg is also Professor of Chemistry and Chemical Biology in the Department of Chemistry and Chemical Biology, and Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study. Her co-authors included Tak-Sing Wong, Sung Hoon Kang, Sindy K.Y. Tang, Benjamin D. Hatton, and Alison Grinthal, all at SEAS, and Elizabeth J. Smythe, at the Schlumberger-Doll Research Center.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tak-Sing Wong, Sung Hoon Kang, Sindy K. Y. Tang, Elizabeth J. Smythe, Benjamin D. Hatton, Alison Grinthal, Joanna Aizenberg. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011; 477 (7365): 443 DOI: 10.1038/nature10447

Cite This Page:

Harvard University. "Carnivorous plant inspires coating that resists just about any liquids." ScienceDaily. ScienceDaily, 22 September 2011. <www.sciencedaily.com/releases/2011/09/110921134526.htm>.
Harvard University. (2011, September 22). Carnivorous plant inspires coating that resists just about any liquids. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/09/110921134526.htm
Harvard University. "Carnivorous plant inspires coating that resists just about any liquids." ScienceDaily. www.sciencedaily.com/releases/2011/09/110921134526.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins