Featured Research

from universities, journals, and other organizations

New metal hydride clusters provide insights into hydrogen storage

Date:
September 23, 2011
Source:
RIKEN
Summary:
A new study has shed light on a class of heterometallic molecular structures whose unique features point the way to breakthroughs in the development of lightweight fuel cell technology. The structures contain a previously-unexplored combination of rare-earth and d-transition metals ideally suited to the compact storage of hydrogen.

Reversible hydrogen addition and release of heterometallic polyhydride clusters (top). The structure changes of the hydride clusters resemble the up-down movement of the pantagraph of a train (bottom).
Credit: Image courtesy of RIKEN

A study published by researchers at the RIKEN Advanced Science Institute (ASI) has shed first-ever light on a class of heterometallic molecular structures whose unique features point the way to breakthroughs in the development of lightweight fuel cell technology. The structures contain a previously-unexplored combination of rare-earth and d-transition metals ideally suited to the compact storage of hydrogen.

The most abundant element in the universe, hydrogen holds great promise as a source of clean, renewable energy, producing nothing but water as a byproduct and thus avoiding the environmental dangers associated with existing mainstream energy sources. Broad adoption of hydrogen, however, has stalled because in its natural gaseous state, the element simply takes up too much space to store and transport efficiently.

One way to solve this problem is to use metal hydrides, metallic compounds that incorporate hydrogen atoms, as a storage medium for hydrogen. In this technique, the metal hydrides bind to hydrogen to produce a solid one thousand times or more smaller than the original hydrogen gas. The hydrogen can then later be released from the solid by heating it to a given temperature.

The new heterometallic hydride clusters synthesized by the RIKEN researchers use rare-earth and d-transition metals as building blocks and exploit the advantages of both. Rare earth metal hydrides remove one major obstacle by enabling analysis using X-ray diffraction, a technique which is infeasible for most other metal hydrides -- offering unique insights into underlying reaction processes involved. Rare earth metal hydrides on their own, however, do not undergo reversible hydrogen addition and release, the cornerstone of hydrogen storage. This becomes possible through the addition of a d-transition metal, in this case tungsten (W) or molybdenum (Mo).

While rare-earth / d-transition metal-type metallic hydride complexes have been studied in the past, the current research is the first to explore complexes with multiple rare earth atoms of the form Ln4MHn and with well-defined structures (Ln = a rare-earth metal such as yttrium, M = a d-transition metal, either tungsten or molybdenum, and H = hydrogen). In a paper in Nature Chemistry, the researchers show that these complexes exhibit unique reactivity properties, pointing the way to new hydrogen storage techniques and promising environmentally-friendly solutions to today's pressing energy needs.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takanori Shima, Yi Luo, Timothy Stewart, Robert Bau, Garry J. McIntyre, Sax A. Mason, Zhaomin Hou. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals. Nature Chemistry, 2011; DOI: 10.1038/NCHEM.1147

Cite This Page:

RIKEN. "New metal hydride clusters provide insights into hydrogen storage." ScienceDaily. ScienceDaily, 23 September 2011. <www.sciencedaily.com/releases/2011/09/110922093721.htm>.
RIKEN. (2011, September 23). New metal hydride clusters provide insights into hydrogen storage. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/09/110922093721.htm
RIKEN. "New metal hydride clusters provide insights into hydrogen storage." ScienceDaily. www.sciencedaily.com/releases/2011/09/110922093721.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins