Featured Research

from universities, journals, and other organizations

Nature offers key lessons on harvesting solar power, say chemists

Date:
September 24, 2011
Source:
University of Toronto
Summary:
Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store solar energy efficiently. According to a new study, the answers can be found in the complex systems at work in nature.

Half the green pigment (chlorophyll) in this Costa Rican rain forest is bound in the light-harvesting complex LHCII (shown in the inset). By studying these natural solar energy antennas, researchers have learnt new physical principles underlying the design of "circuits" that harvest and transport energy from the sun.
Credit: Greg Scholes

Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store solar energy efficiently. According to University of Toronto chemistry professor Greg Scholes, the answers can be found in the complex systems at work in nature.

"Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules," said Scholes, the D.J. LeRoy Distinguished Professor at U of T. "The energy is stored fleetingly as vibrating electrons and then transferred to a suitable reactor. It is the same in biological systems. In photosynthesis, for example, antenna complexes composed of chlorophyll capture sunlight and direct the energy to special proteins called reaction centres that help make oxygen and sugars. It is like plugging those proteins into a solar power socket."

In an article in Nature Chemistry to be published Sept. 23, Scholes and colleagues from several other universities examine the latest research in various natural antenna complexes. Using lessons learned from these natural phenomena, they provide a framework for how to design light harvesting systems that will route the flow of energy in sophisticated ways and over long distances, providing a microscopic "energy grid" to regulate solar energy conversion.

A key challenge is that the energy from sunlight is captured by coloured molecules called dyes or pigments, but is stored for only a billionth of a second. This leaves little time to route the energy from pigments to molecular machinery that produces fuel or electricity. How can we harvest sunlight and utilize its energy before it is lost?

"This is why natural photosynthesis is so inspiring," said Scholes. "More than 10 million billion photons of light strike a leaf each second. Of these, almost every red-coloured photon is captured by chlorophyll pigments which feed plant growth." Learning the workings of these natural light-harvesting systems fostered a vision, proposed by Scholes and his co-authors, to design and demonstrate molecular "circuitry" that is 10 times smaller than the thinnest electrical wire in computer processors. These energy circuits could control, regulate, direct and amplify raw solar energy which has been captured by human-made pigments, thus preventing the loss of precious energy before it is utilized.

Last year, Scholes led a team that showed that marine algae, a normally functioning biological system, uses quantum mechanics in order to optimize photosynthesis, a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun.

"Lessons from nature about solar light harvesting" was written by Scholes, Graham Fleming of the University of California, Berkeley, Alexandra Olaya-Castro of University College, London UK and Rienk van Grondelle of VU University in Amsterdam, The Netherlands.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro, Rienk van Grondelle. Lessons from nature about solar light harvesting. Nature Chemistry, 2011; 3 (10): 763 DOI: 10.1038/nchem.1145

Cite This Page:

University of Toronto. "Nature offers key lessons on harvesting solar power, say chemists." ScienceDaily. ScienceDaily, 24 September 2011. <www.sciencedaily.com/releases/2011/09/110923095801.htm>.
University of Toronto. (2011, September 24). Nature offers key lessons on harvesting solar power, say chemists. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/09/110923095801.htm
University of Toronto. "Nature offers key lessons on harvesting solar power, say chemists." ScienceDaily. www.sciencedaily.com/releases/2011/09/110923095801.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Lessons to Be Learned from Nature in Photosynthesis

Sep. 23, 2011 Lessons to be learned from nature could lead to the development of an artificial version of photosynthesis that would provide us with an absolutely clean and virtually inexhaustible energy source, ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins